98%
921
2 minutes
20
Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication in metazoan organisms. Catalytic activity and protein turnover of PLK4 are tightly coupled in human cells, since changes in PLK4 concentration and catalysis have profound effects on centriole duplication and supernumerary centrosomes, which are associated with aneuploidy and cancer. Recently, PLK4 has been targeted with a variety of small molecule kinase inhibitors exemplified by centrinone, which rapidly induces inhibitory effects on PLK4 and leads to on-target centrosome depletion. Despite this, relatively few PLK4 substrates have been identified unequivocally in human cells, and PLK4 signalling outside centriolar networks remains poorly characterised. We report an unbiased mass spectrometry (MS)-based quantitative analysis of cellular protein phosphorylation in stable PLK4-expressing U2OS human cells exposed to centrinone. PLK4 phosphorylation was itself sensitive to brief exposure to the compound, resulting in PLK4 stabilisation. Analysing asynchronous cell populations, we report hundreds of centrinone-regulated cellular phosphoproteins, including centrosomal and cell cycle proteins and a variety of likely 'non-canonical' substrates. Surprisingly, sequence interrogation of ∼300 significantly down-regulated phosphoproteins reveals an extensive network of centrinone-sensitive [Ser/Thr]Pro phosphorylation sequence motifs, which based on our analysis might be either direct or indirect targets of PLK4. In addition, we confirm that NMYC and PTPN12 are PLK4 substrates, both in vitro and in human cells. Our findings suggest that PLK4 catalytic output directly controls the phosphorylation of a diverse set of cellular proteins, including Pro-directed targets that are likely to be important in PLK4-mediated cell signalling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338032 | PMC |
http://dx.doi.org/10.1042/BCJ20200309 | DOI Listing |
Haematologica
September 2025
Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.
We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Laboratoires VIVACY, France.
Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.
Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.
F1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDFRev Med Liege
September 2025
Service de Diabétologie, Nutrition et Maladies métaboliques, CHU Liège, Belgique.
Type 1 diabetes (T1D) is an autoimmune chronic disease that leads to the destruction of pancreatic beta cells and thus requires lifelong insulin therapy. Constraints and adverse events associated to insulin therapy are well known as well as the risk of long-term complications linked to chronic hyperglycaemia. Symptomatic T1D is preceded by a preclinical asymptomatic period, which is characterized by the presence of at least two auto-antibodies against beta cell without disturbances of blood glucose control (stage 1) or, in addition to immunological biomarkers, by the presence of mild dysglycaemia reflecting a defect of early insulin secretion (stage 2).
View Article and Find Full Text PDFCancer Cytopathol
October 2025
Associate Professor of Pathology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA.
The current review article deals with the evaluation of the oncocytic/oncocytoid lesions in the salivary gland. The authors will focus on the diagnosis of Warthin tumor (WT) as a launching point to detail important morphologic findings that should prompt designation of an aspirate as oncocytic salivary gland neoplasm of uncertain malignant potential or other Milan categories. Oncocytic cells are defined as cells with a moderate to abundant amount of eosinophilic finely granular cytoplasm, round-to-oval nuclei, and large-distinct nucleoli.
View Article and Find Full Text PDF