Perovskite Single-Crystal Microwire-Array Photodetectors with Performance Stability beyond 1 Year.

Adv Mater

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compared with thin-film morphology, 1D perovskite structures such as micro/nanowires with fewer grain boundaries and lower defect density are very suitable for high-performance photodetectors with higher stability. Although the stability of perovskite microwire-based photodetectors has been substantially enhanced in comparison with that of photodetectors based on thin-film morphology, practical applications require further improvements to the stability before implementation. In this study, a template-assisted method is developed to prepare methylammonium lead bromide (MAPbBr ) micro/nanowire structures, which are encapsulated in situ by a protective hydrophobic molecular layer. The combination of the protective layer, high crystalline quality, and highly ordered microstructures significantly improve the stability of the MAPbBr single-crystal microwire arrays. Consequently, these MAPbBr single-crystal microwire-array-based photodetectors exhibit significant long-term stability, maintaining 96% of the initial photocurrent after 1 year without further encapsulation. The lifetime of such photodetectors is hence approximately four times longer than that of the most stable previously reported perovskite micro/nanowire-based photodetector; this is thought to be the most stable perovskite photodetector reported thus far. Furthermore, this work should contribute further toward the realization of perovskite 1D structures with long-term stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202001998DOI Listing

Publication Analysis

Top Keywords

thin-film morphology
8
perovskite structures
8
mapbbr single-crystal
8
long-term stability
8
stability
7
perovskite
6
photodetectors
6
perovskite single-crystal
4
single-crystal microwire-array
4
microwire-array photodetectors
4

Similar Publications

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Localized corrosion in metallic materials is a stochastic phenomenon that causes irreversible structural failure. Its initiation, which occurs at the solid-liquid interface on the nanometer scale, remains difficult to predict and challenging to characterize. Herein, we describe an experimental platform that exploits advances in electrochemical liquid-phase scanning and transmission electron microscopy (LPSEM and LPTEM) to study pitting corrosion of thin-film pure aluminum in a saline environment in real time.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Combination of Si@UiO-66-NH paper-based thin film microextraction with direct solid-state spectrofluorimetry for extraction and determination of estradiol in urine.

Anal Chim Acta

November 2025

Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran. Electronic address:

Background: Determination of the estradiol hormone in urine is crucial for evaluating congenital adrenal hyperplasia, certain hormone-producing ovarian tumors, polycystic ovary syndrome, liver disease, pregnancy, and infertility. On the other hand, steroid hormones can have destructive effects on the environment, animals, and the endocrine system of humans. Consequently, accurately measuring this hormone's concentration in trace amounts is essential for environmental safety and human health.

View Article and Find Full Text PDF