Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

sp. K4S16 (=NBRC 110471) is a producer of a novel tetronate polyether compound nonthmicin. Here, we report the draft genome sequence of this strain together with features of the organism and assembly, annotation and analysis of the genome sequence. The 9.6 Mb genome of sp. K4S16 encoded 9,004 putative ORFs, of which 7,701 were assigned with COG categories. The genome contained four type-I polyketide synthase (PKS) gene clusters, two type-II PKS gene clusters, and three nonribosomal peptide synthetase (NRPS) gene clusters. Among the type-I PKS gene () clusters, a large cluster was annotated to be responsible for nonthmicin synthesis based on bioinformatic analyses. We also performed feeding experiments using labeled precursors and propose the biosynthetic pathway of nonthmicin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256010PMC
http://dx.doi.org/10.7150/jgen.44650DOI Listing

Publication Analysis

Top Keywords

gene clusters
16
genome sequence
12
pks gene
12
draft genome
8
biosynthetic pathway
8
sequence k4s16
4
k4s16 elucidation
4
nonthmicin
4
elucidation nonthmicin
4
nonthmicin biosynthetic
4

Similar Publications

Structure and function of the topsoil microbiome in Chinese terrestrial ecosystems.

Front Microbiol

August 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.

While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.

View Article and Find Full Text PDF

Microenvironment-Driven Mast Cell Plasticity: Insights From Cytokine-Activated Gene Signatures in Skin and Respiratory Diseases.

Allergy

September 2025

Department of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK.

Mast cells (MCs) rapidly adapt to the microenvironment due to the plethora of cytokine receptors expressed. Understanding microenvironment-primed immune responses is essential to elucidate the phenotypic/functional changes MCs undergo, and thus understand their contribution to diseases and predict the most effective therapeutic strategies. We exposed primary human MCs to cytokines mimicking a T1/pro-inflammatory (IFNγ), T2/allergic (IL-4 + IL-13), alarmin-rich (IL-33) and pro-fibrotic/pro-tolerogenic (TGFβ) microenvironment.

View Article and Find Full Text PDF

Bioactive Furan Derivatives from Streptomyces sp. VITGV100: Insights from in silico Docking and ADMET Profiling.

Curr Drug Discov Technol

September 2025

School of BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, Tamil Nadu, India.

Introduction: Streptomyces species have complex genomes, including various biosynthetic gene clusters, frequently responsible for producing antibacterial and bioactive secondary metabolites under certain environmental conditions. To assess the impact of Magnesium and Iron on Streptomyces sp. VITGV100 secondary metabolite production and bioactivity, including molecular docking studies to predict their therapeutic potential.

View Article and Find Full Text PDF

Avian reovirus (ARV) is an important pathogen of poultry and the causative agent of viral arthritis/tenosynovitis. The disease can cause severe clinical signs in broiler flocks at an early age, resulting in major welfare issues and substantial economic losses for the poultry industry. Vaccination of breeders is widely used to control the disease, aiming to reduce vertical transmission and provide maternal antibodies to offspring.

View Article and Find Full Text PDF

Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".

View Article and Find Full Text PDF