Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The exponential growth in the research field of water pollution control demands the evolution of novel sensing materials for regulation and quantification of metals ions. Within this context, the current work reports a new strategy for the synthesis of carbon dots from the hydrothermal treatment of organic nanoparticles. The organic nanoparticles are found to be selective towards Cs(I) ions with a detection limit of 5.3 nM, whereas the highly fluorescent carbon dots are found to be selective towards Ag(I) ions with a detection limit of 4.8 nM. Both sensing systems illustrate rapid sensing with a working pH range from 4-9. The interfacial molecular restructuring of the sensing systems in the aqueous phase has been investigated in the absence and presence of targeted metal ions using a sum frequency generation vibrational spectroscopic tool. The practical applicability of the sensors was checked in environmental samples. This work opens new avenues for the exploration of temperature-guided sensing modulation in nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202000523 | DOI Listing |