98%
921
2 minutes
20
Background: Chronic inflammation is a hallmark among patients with cystic fibrosis (CF). We explored whether mutation-induced (F508del) misfolding of the cystic fibrosis transmembrane conductance regulator (CFTR), and/or secondary colonization with opportunistic pathogens, activate tissue remodeling and innate immune response drivers.
Methods: Using RNA-seq to interrogate global gene expression profiles, we analyzed stress response signaling cascades in primary human bronchial epithelia (HBE) and intestinal organoids.
Results: Primary HBE acquired from CF patients with advanced disease and prolonged exposure to pathogenic microorganisms display a clear molecular signature of activated tissue remodeling pathways, unfolded protein response (UPR), and chronic inflammation. Furthermore, CFTR misfolding induces inflammatory signaling cascades in F508del patient-derived organoids from both the distal small intestine and colon.
Conclusion: Despite the small patient cohort size, this proof-of-principle study supports the use of RNA-seq as a means to both identify CF-specific signaling profiles in various tissues and evaluate disease heterogeneity. Our global transcriptomic data is a useful resource for the CF research community for analyzing other gene expression sets influencing CF disease signature but also transcriptionally contributing to CF heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932027 | PMC |
http://dx.doi.org/10.1016/j.jcf.2020.04.005 | DOI Listing |
ESC Heart Fail
September 2025
Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.
Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.
View Article and Find Full Text PDFMacrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFDiabetes Obes Metab
September 2025
Eli Lilly and Company, Indianapolis, Indiana, USA.
Aims: To determine whether adults with type 2 diabetes (T2D) treated with retatrutide report greater changes in self-reported appetite, dietary restraint, and disinhibition compared to placebo or dulaglutide and to examine associations with weight change.
Materials And Methods: These pre-specified exploratory analyses examined changes from baseline in Appetite Visual Analogue Scale (VAS) and Eating Inventory (EI) scores after 24 and 36 weeks of once-weekly treatment with placebo, dulaglutide 1.5 mg, or retatrutide 0.
Physiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDF