Identification of cofilin 1 as a candidate protein associated to mouse visual cortex plasticity.

Neurosci Lett

Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay. Electronic address:

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to characterize the mechanisms controlling plasticity in the mouse visual cortex, we used, for the first time on brain samples, an unconventional proteomic approach to separate acid-extracted proteins by bi-dimensional electrophoresis (AUT/SDS or AUT/AU gels). The analysis was performed on high plasticity critical period young vs. low plasticity adult, and on fluoxetine-induced high plasticity vs. low plasticity untreated adult mice. Mass spectrometry allowed for the identification of 11 proteins that are differentially expressed between critical period and adult mice, and 5 between fluoxetine-treated and control adult mice. We then focused on cofilin 1, as the intensity level of the corresponding spot on 2D gels was higher in both high plasticity conditions. Western blot showed that cofilin 1 expression is dynamically regulated during postnatal life, reaching a peak at the critical period, and decreasing at adult stage, and that it increases in fluoxetine-treated vs. untreated adult mice. In summary, by using a 2D gel electrophoresis differential approach on basic proteins followed by mass spectrometry and immunoblot analysis, we identified cofilin 1 as a potential candidate controlling plasticity levels of the mouse visual cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2020.135056DOI Listing

Publication Analysis

Top Keywords

adult mice
16
mouse visual
12
visual cortex
12
high plasticity
12
critical period
12
plasticity
8
controlling plasticity
8
low plasticity
8
untreated adult
8
mass spectrometry
8

Similar Publications

regulates early postnatal DPP4 preadipocyte pool expansion.

Genes Dev

September 2025

RU Adipocytes and Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;

Adipose tissue is rapidly expanding early in life. Elucidating the queues facilitating this process will advance our understanding of metabolically healthy obesity. Using single-cell RNA sequencing, we identified compositional differences of prewean and adult murine subcutaneous adipose tissue.

View Article and Find Full Text PDF

The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.

View Article and Find Full Text PDF

The mature mammalian heart has limited ability for self-repair and regeneration. Here, we establish phosphoglycerate dehydrogenase (PHGDH) as a crucial key for cardiomyocyte proliferation, with diminishing expression during postnatal cardiac development. PHGDH overexpression promoted myocardial regeneration and cardiac function in apical resection-operated mice, whereas inhibition by NCT-503 inhibited these processes.

View Article and Find Full Text PDF

Swiss Webster mice as a model for excessive alcohol binge drinking consumption.

Methods Cell Biol

September 2025

LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia. Electronic address:

Binge drinking (BD) is a widespread pattern of excessive alcohol consumption among adolescents and young adults with detrimental consequences for brain development. Animal models are essential for investigating the neurobiological mechanisms underlying BD, but selecting an appropriate model is critical to ensure relevance to human behavior. This study aims to validate a murine model of (BD) using Swiss Webster mice.

View Article and Find Full Text PDF

Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.

View Article and Find Full Text PDF