Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land-use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress-induced emissions due to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15185DOI Listing

Publication Analysis

Top Keywords

biogenic volatile
8
volatile organic
8
organic compounds
8
bvoc dynamics
8
amazonian bvocs
8
climate change
8
climate
5
amazonian
4
amazonian biogenic
4
compounds global
4

Similar Publications

Social wasps make up a significant part to the diversity of the Hymenoptera order, one of the most varied insect groups. Beyond their ecological importance, these insects use their venom for defense, protecting their colonies. The venom of social wasps are rich in biologically active substances, including biogenic amines, peptides, proteins, enzymes, allergens, and volatile compounds.

View Article and Find Full Text PDF

This study investigates the responses of four Mediterranean tree species, Quercus ilex, Viburnum tinus, Acer campestre, and Fraxinus ornus, to urban-relevant abiotic stressors such as soil compaction, water deficit, and over-optimal temperature, applied singly and in combination under controlled experimental conditions. A total of 23 functional leaf traits spanning photosynthesis, water regulation, structural support, and leaf stoichiometry functions were measured. Species identity was the main driver of trait variability.

View Article and Find Full Text PDF

Volatile-Mediated Plant Defense Networks: Field Evidence for Isoprene as a Short-Distance Immune Signal.

Plant Cell Environ

September 2025

Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany.

Isoprene, the most abundant biogenic hydrocarbon in the atmosphere, is known to protect photosynthesis from abiotic stress and significantly impact atmospheric chemistry. While laboratory studies show that isoprene can enhance plant immunity, its role in plant-plant communication under natural field conditions remains unclear. In a 2-year field experiment, we used wild-type and transgenic silver birch (Betula pendula) lines with enhanced isoprene emission levels to examine their impact on neighboring Arabidopsis thaliana, including wild-type and immune signaling mutants (llp1: legume lectin-like protein 1; jar1: jasmonate resistant 1).

View Article and Find Full Text PDF

Connecting optical remote sensing of plant photosynthesis with biogenic volatile organic compound emissions.

New Phytol

August 2025

Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, 00014, Helsinki, Finland.

Plant biogenic volatile organic compounds (BVOCs) play a critical role in atmospheric chemistry by forming ozone and secondary organic aerosols, making them key agents in regulating air quality and influencing climate. However, current models usually rely on limited site-specific data and indirect inputs, introducing significant uncertainties in BVOC predictions. We propose remote sensing of photosynthetic optical signals, such as the carotenoid-sensitive photochemical reflectance index (PRI) and Chl/carotenoid index (CCI) and sun-induced fluorescence (SIF), to help reduce these uncertainties.

View Article and Find Full Text PDF

Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas.

Nat Commun

August 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.

Biogenic volatile organic compounds (BVOCs) are critical to biosphere-atmosphere interactions, profoundly influencing atmospheric chemistry, air quality and climate, yet accurately estimating their emissions across diverse ecosystems remains challenging. Here we introduce GEE-MEGAN, a cloud-native extension of the widely used MEGAN2.1 model, integrating dynamic satellite-derived land cover and vegetation within Google Earth Engine to produce near-real-time BVOC emissions at 10-30 m resolution, enabling fine-scale tracking of emissions in rapidly changing environments.

View Article and Find Full Text PDF