Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plants have the ability to colonize highly diverse environments. The zinc and cadmium hyperaccumulator Arabidopsis halleri has adapted to establish populations on soils covering an extreme range of metal availabilities. The A. halleri ZIP6 gene presents several hallmarks of hyperaccumulation candidate genes: it is constitutively highly expressed in roots and shoots and is associated with a zinc accumulation quantitative trait locus. Here, we show that AhZIP6 is duplicated in the A. halleri genome. The two copies are expressed mainly in the vasculature in both A. halleri and Arabidopsis thaliana, indicative of conserved cis regulation, and acquired partial organ specialization. Yeast complementation assays determined that AhZIP6 is a zinc and cadmium transporter. AhZIP6 silencing in A. halleri or expression in A. thaliana alters cadmium tolerance, but has no impact on zinc and cadmium accumulation. AhZIP6-silenced plants display reduced cadmium uptake upon short-term exposure, adding AhZIP6 to the limited number of Cd transporters supported by in planta evidence. Altogether, our data suggest that AhZIP6 is key to fine-tune metal homeostasis in specific cell types. This study additionally highlights the distinct fates of duplicated genes in A. halleri.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.13806DOI Listing

Publication Analysis

Top Keywords

zinc cadmium
16
arabidopsis halleri
8
cadmium tolerance
8
cadmium
7
halleri
7
ahzip6
5
copies zinc
4
cadmium zip6
4
zip6 transporter
4
transporter arabidopsis
4

Similar Publications

A ratiometric dual-channel fluorescent probe for selective Zn/Cd sensing: Applications in food quality control, real-time monitoring in living cells, and mice.

Anal Chim Acta

November 2025

State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:

Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.

Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.

View Article and Find Full Text PDF

Key factors affecting heavy metal contamination of mangrove sediments in the Zhangjiang Estuary: Implications for environmental management.

Mar Pollut Bull

September 2025

School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen, 361024, China. Electronic address:

With the rapid economic development of coastal cities, the discharge of significant amounts of heavy metal pollutants has posed a severe threat to mangrove forests. However, the potential sources of these metals and the health risks they pose remain poorly understood. This study analyzed 14 heavy metals in mangrove and river sediments of Zhangjiang Estuary, southeastern China.

View Article and Find Full Text PDF

NRAMP family in plants: Contribution to cadmium accumulation.

Biochim Biophys Acta Mol Cell Res

September 2025

University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Metal Homeostasis, 1 Miecznikowa Str., 02-096, Warszawa, Poland. Electronic address:

The Natural Resistance Associated Macrophage Proteins (NRAMPs) are membrane-targeted transporters with low substrate specificity, that mediate the import (translocation to the cytoplasm) of metals, mainly essential nutrients, e.g. iron (Fe), manganese (Mn), zinc (Zn), cobalt (Co), copper (Cu) or nickel (Ni).

View Article and Find Full Text PDF

Bioaccumulation of metals and metalloids in marine environments poses a significant risk to both human and aquatic health, with seasonal fluctuations substantially influencing its dynamics and magnitude. This study investigated the impact of metals and metalloids exposure on the health of Wallago attu (Wallago catfish) and Catla catla (Indian carp) inhabiting the Head Siphon, Mailsi, Pakistan. This study involved the seasonal (May 2022, October 2022, April 2023) assessment of physicochemical properties and the concentrations of several metals and metalloids-copper (Cu), chromium (Cr), arsenic (As), cadmium (Cd), nickel (Ni), zinc (Zn), and iron (Fe)-in water samples.

View Article and Find Full Text PDF

This study aimed to assess the environmental and health risks of heavy metal contamination from e-waste recycling in Lahore, Pakistan. Surface soil (0-15 cm) samples were collected from recycling facilities, and heavy metal concentrations were measured using atomic absorption spectrophotometry. The mean concentrations (mg/kg) of Cadmium (Cd) (5.

View Article and Find Full Text PDF