98%
921
2 minutes
20
Human induced pluripotent stem cell (hiPSC) lines have previously been generated through the NHLBI sponsored NextGen program at nine individual study sites. Here, we examined the structural integrity of 506 hiPSC lines as determined by copy number variations (CNVs). We observed that 149 hiPSC lines acquired 258 CNVs relative to donor DNA. We identified six recurrent regions of CNVs on chromosomes 1, 2, 3, 16 and 20 that overlapped with cancer associated genes. Furthermore, the genes mapping to regions of acquired CNVs show an enrichment in cancer related biological processes (IL6 production) and signaling cascades (JNK cascade & NFκB cascade). The genomic region of instability on chr20 (chr20q11.2) includes transcriptomic signatures for cancer associated genes such as ID1, BCL2L1, TPX2, PDRG1 and HCK. Of these HCK shows statistically significant differential expression between carrier and non-carrier hiPSC lines. Overall, while a low level of genomic instability was observed in the NextGen generated hiPSC lines, the observation of structural instability in regions with known cancer associated genes substantiates the importance of systematic evaluation of genetic variations in hiPSCs before using them as disease/research models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575060 | PMC |
http://dx.doi.org/10.1016/j.scr.2020.101803 | DOI Listing |
The ATP-binding cassette subfamily A member 3 (ABCA3) protein on the limiting membrane of lamellar bodies in alveolar type 2 (AT2) cells transports phospholipids required for pulmonary surfactant assembly. ABCA3 deficiency results from biallelic pathogenic variants in and causes progressive neonatal respiratory failure or childhood interstitial lung disease (chILD). Supportive/compassionate care or lung transplantation are the only current definitive treatments for ABCA3 deficiency and progressive respiratory failure.
View Article and Find Full Text PDFStem Cell Res
August 2025
Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France; IStem, CECS, Corbeil-Essonnes, France. Electronic address:
Glycogen storage disease type II (GSDII), or Pompe disease, is a rare autosomal recessive metabolic disorder characterized by the deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). GAA deficiency results in the progressive accumulation of glycogen in cardiac and skeletal muscle tissues, leading to cellular dysfunction and clinical manifestations, including muscle weakness, respiratory difficulties, and cardiomyopathy. In this study, we report the derivation of three induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells of GSDII patients.
View Article and Find Full Text PDFJ Neurotrauma
September 2025
Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA.
Traumatic brain injury (TBI) is the most important environmental risk factor for neurodegenerative disease. Tauopathy plays an important role in post-traumatic neurodegeneration. Human-induced pluripotent stem cell (hiPSC)-derived cortical organoids have exciting potential to reveal the influence of genotype on post-traumatic neurodegeneration because they permit manipulation of the genome in a human system.
View Article and Find Full Text PDFJ Pineal Res
September 2025
Unit of Molecular Metabolism, Lund University Diabetes Centre, Lund, Sweden.
Disruptions in circadian rhythm, partly controlled by the hormone melatonin, increase the risk of type 2 diabetes (T2D). Accordingly, a variant of the gene encoding the melatonin receptor 1B (MTNR1B) is robustly associated with increased risk of T2D. This single-nucleotide polymorphism (SNP; rs10830963; G-allele) is an expression quantitative trait locus (eQTL) in human pancreatic islets, conferring increased expression of MTNR1B, which is thought to perturb pancreatic β-cell function.
View Article and Find Full Text PDFInduced pluripotent stem cell (iPSC)-derived natural killer (iNK) cells offer a promising platform for off-the-shelf immunotherapy against hematological malignancies. NK cell function is dynamically regulated through education driven by inhibitory receptors, including CD94/NKG2A and killer cell immunoglobulin-like receptors (KIR). However, the acquisition of inhibitory receptors in iNK cells and their role during differentiation and education remains poorly defined.
View Article and Find Full Text PDF