Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current technologies for high-throughput single-cell RNA sequencing (scRNA-seq) are based upon stochastic pairing of cells and barcoded beads in nanoliter droplets or wells. They are limited by the mathematical principle of the Poisson statistics such that the utilization of either cells or beads or both is no more than ∼33%. Despite the versatile design of microfluidics or microwells for high-yield loading of beads that beats the Poisson limit, subsequent encapsulation of single cells is still determined by stochastic pairing, representing a fundamental limitation in the field of single-cell sequencing. Here, we present dTNT-seq, an integrated dielectrophoresis (DEP)-trapping-nanowell-transfer (dTNT) approach to perform cell trapping and bead loading both in a sub-Poisson manner to facilitate scRNA-seq. A larger-sized 50 μm microwell array was prealigned precisely on top of the 20 μm DEP nanowell array such that single cells trapped by DEP can be readily transferred into the underneath larger wells by flipping the device, followed by subsequent hydrodynamic bead loading and coisolation with transferred single cells. Using a dTNT device composed of 3600 electroactive DEP-nanowell units, we demonstrated a single-cell trapping rate of 91.84%, a transfer efficiency of 82%, and a routine bead loading rate of >99%, which breaks the Poisson limit for the capture of both cells and beads, thus called double-sub-Poisson distribution, prior to encapsulating them in nanoliter wells for cellular mRNA barcoding. This approach was applied to human (HEK) and mouse (3T3) cells. Comparison with a non-DEP-based method through gene expression clustering and regulatory pathway analysis demonstrates consistent patterns and negligible alternation of cellular transcriptional states by DEP. We envision the dTNT-seq device can be modified for studying cell-cell interactions and enable other applications requiring active manipulation of single cells prior to transcriptome sequencing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c02953DOI Listing

Publication Analysis

Top Keywords

single cells
16
bead loading
12
single-cell rna
8
rna sequencing
8
stochastic pairing
8
cells
8
cells beads
8
poisson limit
8
integrated dielectrophoresis-trapping
4
dielectrophoresis-trapping nanowell
4

Similar Publications

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Objectives Background: Monocyte anisocytosis (monocyte distribution width [MDW]) has been previously validated to predict sepsis and outcome in patients presenting in the emergency department and mixed-population ICUs. Determining sepsis in a critically ill surgical/trauma population is often difficult due to concomitant inflammation and stress. We examined whether MDW could identify sepsis among patients admitted to a surgical/trauma ICU and predict clinical outcome.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF

In the event of a large-scale radiological or nuclear emergency, a rapid, high-throughput screening tool will be essential for efficient triage of potentially exposed individuals, optimizing scarce medical resources and ensuring timely care. The objective of this work was to characterize the effects of age and sex on two intracellular lymphocyte protein biomarkers, BAX and p53, for early radiation exposure classification in the human population, using an imaging flow cytometry-based platform for rapid biomarker quantification in whole blood samples. Peripheral blood samples from male and female donors, across three adult age groups (young adult, middle-aged, senior) and a juvenile cohort, were X-irradiated (0-5 Gy), and biomarker expression was quantified at two- and three-days post-exposure.

View Article and Find Full Text PDF