98%
921
2 minutes
20
The ionization state of titratable amino acids strongly affects proteins structure and functioning in a large number of biological processes. It is therefore essential to be able to characterize the p of ionizable groups inside proteins and to understand its microscopic determinants in order to gain insights into many functional properties of proteins. A big effort has been devoted to the development of theoretical approaches for the prediction of deprotonation free energies, yet the accurate theoretical/computational calculation of p values is recognized as a current challenge. A methodology based on a hybrid quantum/classical approach is here proposed for the computation of deprotonation free energies. The method is applied to calculate the p of formic acid, methylammonium, and methanethiol, providing results in good agreement with the corresponding experimental estimates. The p is also calculated for aspartic acid and lysine as single residues in solution and for three aspartic/glutamic acids inside a well-characterized protein: hen egg white lysozyme. While for small molecules the method is able to deal with multiple protonation states of all titratable groups, this becomes computationally very expensive for proteins. The calculated p values for the single amino acids (except for the zwitterionic aspartic acid) and inside the protein display a systematic shift with respect to the experimental values that suggests that the fine balance between hydrophobic and polar interactions might be not accurately reproduced by the usual classical force-fields, thus affecting the computation of deprotonation free energies. The calculated p shifts inside the protein are in good agreement with the corresponding experimental ones (within 1 p unit), well reproducing the p changes due to the protein environment even in the case of large p shifts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c01752 | DOI Listing |
Chem Soc Rev
September 2025
Department of Chemistry and Biochemistry, UCSD-CNRS Joint Research Laboratory (IRL3555), University of California, San Diego, La Jolla, CA 92093-0358, USA.
N-Heterocyclic carbenes (NHCs) hold a unique significance in organometallic catalysis and are powerful organocatalysts for a variety of organic transformations involving crucial intermediates such as Breslow intermediates (BIs), deprotonated BIs (BI-s), ketyl radicals (KRs), and acyl azoliums (AAs). To address the remaining challenges facing reactions catalyzed by NHCs, non-classical stable carbenes, namely 1,2,3-triazolylidenes (MICs), cousins of NHCs, have shown great potential. MICs share similar features with typical NHCs but possess unique characteristics, such as enhanced σ-donor ability and absence of dimerization.
View Article and Find Full Text PDFWater Res
September 2025
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
The advanced degradation of ferricyanide ([Fe(CN)₆]³⁻) in industrial wastewater faces dual bottlenecks of self-acidification-induced hydrogen cyanide (HCN) release and inefficient decomplexation. This study innovatively constructs an alkaline UV/Peracetic Acid (PAA) synergistic system and systematically elucidates its triple action mechanism: (1) UV irradiation at 254 nm directly drives ligand-to-metal charge transfer (LMCT) excitation of ferricyanide, achieving efficient Fe-CN bond breaking (Φ₂₅₄ = 0.235-0.
View Article and Find Full Text PDFJ Org Chem
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
We herein report the Minisci-type redox-neutral decarboxylative hydroxyalkylation of heteroarenes under photocatalyst- and transition-metal-free conditions. This methodology tolerates various functional groups that can be subsequently elaborated. Upon absorption of photons, the excited state of the α-oxocarboxylic acid forms an acyl radical, which adds to the protonated heteroarene to give the desired product after a spin center shift (SCS), reduction, and deprotonation.
View Article and Find Full Text PDFPlant Cell Physiol
August 2025
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
Photosystem II (PSII) catalyzes the light-driven oxidation of water, progressing via sequential oxidation states (S-states) of the Mn4CaO5 cluster. Among structural snapshots of intermediate S-states obtained using X-ray free-electron laser (XFEL) crystallography, two-flash XFEL structures assigned to the S3 state reveal an additional oxygen atom (O6) near the O5 site of the cluster, leading to proposals that O6 is incorporated as a new substrate water molecule during the S2 to S3 transition. However, recent re-analyses of the XFEL data highlight potential complications, including conformational heterogeneity, refinement bias, and possible radiation-induced artifacts.
View Article and Find Full Text PDFRSC Adv
August 2025
Nuclear Materials Authority P.O. Box 530, El-Maadi Cairo Egypt
Carbon-free nuclear energy meets growing energy demand; uranium recycling enhances sustainability, economic, and environmental benefits. Herein, efficient three α-aminophosphonates-based sorbents were previously synthesized a one-pot method using distinct amine precursors (aniline, -phenylenediamine, anthranilic acid), yielding S-H, S-NH aminated, and S-COOH carboxylated, respectively enhanced aminophosphonate. Elemental analysis confirms three α-aminophosphonate sorbents (S-H, S-COOH, S-NH) with amine-dependent structures.
View Article and Find Full Text PDF