98%
921
2 minutes
20
The enhanced intracellular survival (Eis) protein of () is a versatile acetyltransferase that multiacetylates aminoglycoside antibiotics abolishing their binding to the bacterial ribosome. When overexpressed as a result of promoter mutations, Eis causes drug resistance. In an attempt to overcome the Eis-mediated kanamycin resistance of , we designed and optimized structurally unique thieno[2,3-]pyrimidine Eis inhibitors toward effective kanamycin adjuvant combination therapy. We obtained 12 crystal structures of enzyme-inhibitor complexes, which guided our rational structure-based design of 72 thieno[2,3-]pyrimidine analogues divided into three families. We evaluated the potency of these inhibitors as well as their ability to restore the activity of kanamycin in a resistant strain of , in which Eis was upregulated. Furthermore, we evaluated the metabolic stability of 11 compounds . This study showcases how structural information can guide Eis inhibitor design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385556 | PMC |
http://dx.doi.org/10.1021/acschembio.0c00184 | DOI Listing |
Langmuir
September 2025
Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.
Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye.
A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.
View Article and Find Full Text PDFACS Omega
September 2025
School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom.
The present research reports the synthesis of poly-[ethylene oxide]-based composite films (500 μm) containing metal nanoparticles (NPs) [Ag ( ∼ 6 nm), Cu ( ∼ 25 nm), and Fe ( ∼ 35 nm)] as the mobile phase. The novelty of the study is in the corroboration of a plausible mechanism for the generation of metal NPs through green synthesis using herbal extracts of (Tea) and (Neem). Density functional theory (DFT) is used to optimize the phytoreductants present in both biosources, wherein the reducing and/or stabilizing functional entities are primarily hydroxyl groups (-OH).
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA; EnLiSense LLC, Allen, TX, 75013, USA. Electronic address:
Rapid detection of live Salmonella typhimurium in food is critical for preventing contamination and protecting public health. Traditional methods, though reliable, are slow, costly, and require centralized labs. Many existing biosensors primarily detect dead bacteria, increasing false-positive risks.
View Article and Find Full Text PDF