Impact of host intraspecies genetic variation, diet, and age on bacterial and fungal intestinal microbiota in tigers.

Microbiologyopen

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China.

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The bacterial microbiota in the gut varies among species, as well as with habitat, diet, age, and other factors. Intestinal microbiota homeostasis allows a host to adjust metabolic and immune performances in response to environmental changes. Therefore, potential implications of the gut microbiota in sustaining the health of the host have gained increasing attention in the field of endangered animal conservation. However, the effect of host intraspecies genetic variation on the gut microbiota is unknown. Moreover, little is known about the complexity of the gut mycobiota. Tigers are listed as endangered species, raising worldwide concern. Potential influences of subspecies, diet, and age on the gut microbiota in tigers were investigated in this study to provide a better understanding of the response of the tiger gut microbiota to external changes. The results revealed that the impacts of the factors listed above on gut bacterial and fungal communities are versatile. Host intraspecies genetic variation significantly impacted only fungal alpha diversity of the gut microbiota. Differences in diet, on the other hand, had a significant impact on alpha diversity of the gut microbiota, but exerted different effects on beta diversity of gut bacterial and fungal communities. Host age had no significant impact on the diversity of the gut fungal communities, but significantly impacted beta diversity of gut bacterial communities. This comprehensive study of tiger gut microbiota is an essential reference for tiger conservation when considering feeding and management strategies, and will contribute to a better understanding of the mycobiota in wildlife.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349146PMC
http://dx.doi.org/10.1002/mbo3.1050DOI Listing

Publication Analysis

Top Keywords

gut microbiota
28
diversity gut
20
gut
13
host intraspecies
12
intraspecies genetic
12
genetic variation
12
diet age
12
bacterial fungal
12
gut bacterial
12
fungal communities
12

Similar Publications

Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.

View Article and Find Full Text PDF

Effects and Mechanisms of Lactiplantibacillus plantarum G83 on Enterotoxigenic Escherichia coli (ETEC)-Induced Intestinal Inflammation.

Probiotics Antimicrob Proteins

September 2025

Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.

Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.

View Article and Find Full Text PDF

Parity influences on the infant gut microbiome development: a longitudinal cohort study.

Gut Microbes

December 2025

Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.

Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.

View Article and Find Full Text PDF

Metabolic consequences and gut microbiome alterations in rats consuming pork or a plant-based meat analogue.

Food Funct

September 2025

Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.

It is unknown how human health is affected by the current increased consumption of ultra-processed plant-based meat analogues (PBMA). In the present study, rats were fed an experimental diet based on pork or a commercial PBMA, matched for protein, fat, and carbohydrate content for three weeks. Rats on the PBMA diet exhibited metabolic changes indicative of lower protein digestibility and/or dietary amino acid imbalance, alongside increased mesenteric (+38%) and retroperitoneal (+20%) fat depositions despite lower food and energy intake.

View Article and Find Full Text PDF

Periprosthetic joint infection: Time to think outside the box.

Knee Surg Sports Traumatol Arthrosc

September 2025

International Joint Center, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.

Despite undisputed success of orthopaedic procedures, surgical site infections (SSI) such as periprosthetic joint infection (PJI) continues to compromise the outcome and result in major clinical and economic burden. The overall rate of infection is expected to rise in the future resulting in significant associated mortality and morbidity. Traditional concepts have largely attributed the source of PJI to exogenous pathogens.

View Article and Find Full Text PDF