A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The employment of 2D perovskites is a promising approach to tackling the stability and voltage issues inherent in perovskite solar cells. It remains unclear, however, whether other perovskites with different dimensionalities have the same effect on efficiency and stability. Here, we report the use of quasi-3D azetidinium lead iodide (AzPbI) as a secondary layer on top of the primary 3D perovskite film that results in significant improvements in the photovoltaic parameters. Remarkably, the utilization of AzPbI leads to a new passivation mechanism due to the presence of surface dipoles resulting in a power conversion efficiency (PCE) of 22.4%. The open-circuit voltage obtained is as high as 1.18 V, which is among the highest reported to date for single junction perovskite solar cells, corresponding to a voltage deficit of 0.37 V for a band gap of 1.55 eV.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c01704DOI Listing

Publication Analysis

Top Keywords

perovskite solar
12
solar cells
12
passivation mechanism
8
surface dipoles
8
mechanism exploiting
4
exploiting surface
4
dipoles affords
4
affords high-performance
4
perovskite
4
high-performance perovskite
4

Similar Publications