Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pain is one of the most common reasons to seek medical attention and chronic pain is a worldwide epidemic. There are currently no relevant biomarkers for the diagnosis of chronic pain, and new therapeutic strategies for chronic pain treatment are desperately needed. The chronic constriction injury (CCI) of the sciatic nerve is a widely used preclinical model of pathological neuropathic pain. Over the past decade, investigators have come to appreciate the many contributions of noncoding RNA including microRNA (miRNA), and other long and short noncoding (nc) RNAs. The development and/or maintenance of chronic pain could be controlled epigenetically through ncRNAs. Here we seek to characterize CNS tissues in a mouse model of neuropathic pain as this may serve to elucidate potential biomarkers relevant to pathological pain in humans. Male C57BL6/J mice (6 CCI and 6 sham procedure) underwent surgery for sciatic nerve ligation with chromic gut sutures. Following 7 days, mechanical allodynia was quantified using the von Frey assay. Mice were then euthanized for collection of spinal cord and sciatic nerve. cDNA was synthesized to 627 unique mature miRNAs from the total RNA. In the CCI mice that displayed mechanical allodynia, 11 and 125 miRNAs were differentially expressed (i.e., greater than 1.5-fold increase or decrease; P < 0.05) in the spinal cord and sciatic nerve, respectively, as compared to sham controls. Among those differentially expressed miRNAs in the sciatic nerve of CCI mice, the following passed the more stringent Bonfferoni correction: miR-138-3p, miR-138-5p and miR-676-3p, reduced and miR-142-5p, increased. Our data support miRNAs as promising therapeutic targets for the treatment of pathological pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339614PMC
http://dx.doi.org/10.1016/j.neulet.2020.135029DOI Listing

Publication Analysis

Top Keywords

sciatic nerve
16
chronic pain
16
neuropathic pain
12
pain
9
spinal cord
8
cord sciatic
8
chronic constriction
8
constriction injury
8
injury cci
8
model neuropathic
8

Similar Publications

Objective: To compare postoperative outcomes between combined fascia iliaca compartment-sciatic nerve blockade (FICB-SNB) and monitored anesthesia care (MAC) in patients with chronic limb-threatening ischemia (CLTI) undergoing lower-extremity revascularization (LER).

Design: Retrospective matched cohort study (1:1 propensity score matching).

Setting: Single-center analysis of CLTI patients undergoing LER.

View Article and Find Full Text PDF

Characterization of CNS Network Changes in Two Rodent Models of Chronic Pain.

Biol Pharm Bull

September 2025

Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).

View Article and Find Full Text PDF

[Surgical Repair of Proximal Hamstring Tendon Avulsion].

Rev Bras Ortop (Sao Paulo)

June 2025

Grupo do Quadril, Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.

Injuries to the proximal hamstring muscle complex are common in athletes and range from strains to tendinous and bony avulsions. The lesion mechanism typically involves an eccentric contraction of the hamstring muscles during abrupt hip hyperflexion with the knee in extension. Low-speed injuries occur in high kicks and splits, whereas tendon avulsions are common in high-speed activities, such as running and ballet.

View Article and Find Full Text PDF

Surgical Repair of Proximal Hamstring Tendon Avulsion.

Rev Bras Ortop (Sao Paulo)

June 2025

Hip Group, Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

Injuries to the proximal hamstring muscle complex are common in athletes and range from strains to tendinous and bony avulsions. The lesion mechanism typically involves an eccentric contraction of the hamstring muscles during abrupt hip hyperflexion with the knee in extension. Low-speed injuries occur in high kicks and splits, whereas tendon avulsions are common in high-speed activities, such as running and ballet.

View Article and Find Full Text PDF

Introduction/aims: Therapeutic electrical stimulation (ES) of repaired nerves has been demonstrated to improve muscle function. Previous studies applied ES to the proximal transected nerve end (P-ES) with benefits to the neuronal cell body. We investigated whether a single ES dose applied to the distal end (D-ES) or distal and proximal ends (DP-ES) prior to nerve repair provides benefits to neuromuscular junction (NMJ) and muscle recovery.

View Article and Find Full Text PDF