Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A series of biocompatible high-porosity (up to 72.4%) TiZr-based porous bulk metallic glass (BMG) scaffolds were successfully fabricated by hot pressing a mixture of toxic element-free TiZr-based BMG powder and an Al particle space holder. The morphology of the fabricated scaffolds was similar to that of human bones, with pore sizes ranging from 75 to 250 μm. X-ray diffraction patterns and transmission electron microscopy images indicated that the amorphous structure of the TiZr-based BMG scaffolds remained in the amorphous state after hot pressing. Noncytotoxicity and extracellular calcium deposition of the TiZr-based BMG scaffolds at porosities of 32.8%, 48.8%, and 64.0% were examined by using the direct contact method. The results showed that the BMG scaffolds possess high cell viability and extracellular calcium deposition with average cell survival and deposition rates of approximately 170.1% and 130.9%, respectively. In addition, the resulting TiZr-based BMG scaffolds exhibited a considerable reduction in Young's moduli from 56.4 to 2.3 GPa, compressive strength from 979 to 19 MPa, and bending strength from 157 MPa to 49 MPa when the porosity was gradually increased from 2.0% to 72.4%. Based on the aforementioned specific characteristics, TiZr-based BMG scaffolds can be considered as potential candidates for biomedical applications in the human body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353611PMC
http://dx.doi.org/10.3390/jfb11020028DOI Listing

Publication Analysis

Top Keywords

bmg scaffolds
24
tizr-based bmg
20
bulk metallic
8
metallic glass
8
scaffolds
8
hot pressing
8
extracellular calcium
8
calcium deposition
8
bmg
7
tizr-based
6

Similar Publications

3D-printed scaffold with biomimetic gradient structure for promoting bone regeneration through inhibiting inflammation and facilitating in-situ biomineralization.

Biomater Adv

August 2025

Department of Orthopedics, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou 350108, PR China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China. Electronic address:

Critical-sized bone defects caused by trauma, congenital malformation, or tumor resection remain a major challenge around the world. Current bone tissue-engineering scaffolds are partially confined by inadequate scaffold architecture design that mismatches with natural bone tissue, which affect normal biological functions like inflammation modulation and biomineralization, thus impairing bone regeneration process. Herein, a biomimetic 3D-printed BMGP scaffold composed of polydopamine (PDA)-polylactide (PLA) scaffold and black phosphorus (BP) nanosheets/manganese carbonyl (MnCO) nanosheets/gelatin methacryloyl hydrogel (named as BMG hydrogel) was developed for augmenting bone regeneration via strengthening anti-inflammatory effect and promoting in-situ biomineralization process.

View Article and Find Full Text PDF

In recent years, bone tissue engineering (BTE) has made significant progress in promoting the direct and functional connection between bone and graft, including osseointegration and osteoconduction, to facilitate the healing of damaged bone tissues. Herein, we introduce a new, environmentally friendly, and cost-effective method for synthesizing reduced graphene oxide (rGO) and hydroxyapatite (HAp). The method uses epigallocatechin-3--gallate (EGCG) as a reducing agent to synthesize rGO (E-rGO), and HAp powder is obtained from Atlantic bluefin tuna ().

View Article and Find Full Text PDF

Silver-doped bioglass modified scaffolds: A sustained antibacterial efficacy.

Mater Sci Eng C Mater Biol Appl

October 2021

Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; Shenzhen Institute of Information Technology, Shenzhen 518172, China. Electr

Implant-related bacterial infection is a serious complication, which even causes implant failure. Silver (Ag) nanoparticles are broadly used antibacterial agents due to their excellent antibacterial ability and broad-spectrum bactericidal property. However, the significance of burst release cannot be entirely ignored.

View Article and Find Full Text PDF

Bone is a complex structure with unique cellular and molecular process in its formation. Bone tissue regeneration is a well-organized and routine process at the cellular and molecular level in humans through the activation of biochemical pathways and protein expression. Though many forms of biomaterials have been applied for bone tissue regeneration, electrospun nanofibrous scaffolds have attracted more attention among researchers with their physicochemical properties such as tensile strength, porosity, and biocompatibility.

View Article and Find Full Text PDF

Onlay Repair Technique for the Management of Ureteral Strictures: A Comprehensive Review.

Biomed Res Int

April 2021

Department of Urology, Temple University School of Medicine, 255S 17th Street, 7th Floor Medical Tower, Philadelphia, PA 19103, USA.

Ureteroplasty using onlay grafts or flaps emerged as an innovative procedure for the management of proximal and midureteral strictures. Autologous grafts or flaps used commonly in ureteroplasty include the oral mucosae, bladder mucosae, ileal mucosae, and appendiceal mucosae. Oral mucosa grafts, especially buccal mucosa grafts (BMGs), have gained wide acceptance as a graft choice for ureteroplasty.

View Article and Find Full Text PDF