98%
921
2 minutes
20
Herein, plasmonic metal tripod nanoframes with three-fold symmetry were synthesized in a high yield (∼83%), and their electric field distribution and single-particle surface-enhanced Raman scattering (SERS) were studied. We realized such complex frame morphology by synthesizing analogous tripod nanoframes through multiple transformations. The precise control of the Au growth pattern led to uniform tripod nanoframes embedded with circle or line-shaped hot spots. The linear-shaped nanogaps ("Y"-shaped hot-zone) of the frame structures can strongly and efficiently confine the electric field, allowing for strong SERS signals. Coupled with a high synthetic yield of the targeted frame structure, strong and uniform SERS signals were obtained inside the nanoframe gaps. Remarkably, quite reproducible SERS signals were obtained with these structures-the SERS enhancement factors with an average value of 7.9 × 10 with a distribution of enhancement factors from 2.2 × 10 to 2.2 × 10 for 45 measured individual particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c01084 | DOI Listing |
ACS Nano
June 2022
Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea.
We report the synthesis of all-frame-faceted octahedral nanoframes containing eight Y-shaped hot zones in a single entity where electromagnetic near-field focusing can be maximized. To realize such state-of-the-art complex nanoframes, a series of multiple stepwise bottom-up processes were executed by exploiting Au octahedral nanoparticles as the initial template. By rationally controlling the chemical reactivity of different surface facets (, vertexes, edges, and terraces), the Au octahedral nanoparticles went through controlled shape transformations, leading to Au-engraved nanoparticles wherein 24 edges wrap the octahedral Au nanoparticle core.
View Article and Find Full Text PDFNano Lett
June 2020
Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea.
Herein, plasmonic metal tripod nanoframes with three-fold symmetry were synthesized in a high yield (∼83%), and their electric field distribution and single-particle surface-enhanced Raman scattering (SERS) were studied. We realized such complex frame morphology by synthesizing analogous tripod nanoframes through multiple transformations. The precise control of the Au growth pattern led to uniform tripod nanoframes embedded with circle or line-shaped hot spots.
View Article and Find Full Text PDFNat Commun
December 2019
Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea.
The synthesis of highly complex two-dimensional (2D) metal nanoframes remains a great challenge. Synthetic strategies for preparing 2D metal nanoframes are few, and rational and systematic synthetic pathways to more complicated architectures have not yet been reported. Herein, we demonstrate a stepwise synthetic strategy for complex 2D metal nanoframes with a high degree of intricacy; the strategy leads to a variety of shapes, including rings, triangles, hexagons, and tripods with tailorable single or double frames in a single entity.
View Article and Find Full Text PDF