98%
921
2 minutes
20
For many years, an extensive array of chemometric methods have provided a platform upon which a quantitative description of environmental conditions can be obtained. Applying chemometric methods to environmental data allows us to identify and describe the interrelations between certain environmental drivers. They also provide an insight into the interrelationships between these drivers and afford us a greater understanding of the potential impact that these drivers can place upon the environment. However, an effective marriage of these two systems has not been performed. Therefore, it is the aim of this review to highlight the advantages of using chemometrics and sensors to identify hidden trends in environmental parameters, which allow the state of the environment to be effectively monitored. Despite the combination of chemometrics and sensors, to capture new developments and applications in the field of environmental sciences, these methods have not been extensively used. Importantly, although different parameters and monitoring procedures are required for different environments (e.g., air, water, soil), they are not distinct, separate entities. Contemporary developments in the use of chemometrics afford us the ability to predict changes in different aspects of the environment using instrumental methods. This review also provides an insight into the prevailing trends and the future of environmental sensing, highlighting that chemometrics can be used to enhance our ability to monitor the environment. This enhanced ability to monitor environmental conditions and to predict trends would be beneficial to government and research agencies in their ability to develop environmental policies and analysis procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.9b00616 | DOI Listing |
Front Bioeng Biotechnol
August 2025
Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Spectroscopic soft sensors are developed by combining spectral data with chemometric modeling, and offer as Process Analytical Technology (PAT) tools powerful insights into biopharmaceutical processing. In this study, soft sensors based on Raman spectroscopy and linear or partial least squares (PLS) regression were developed and successfully transferred to a filtration-based recovery step of precipitated virus-like particles (VLPs). For near real-time monitoring of product accumulation and precipitant depletion, the dual-stage cross-flow filtration (CFF) set-up was equipped with an on-line loop in the second membrane stage.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Chemical Science and Technologies, University of Tor Vergata, Via della Ricerca Scientifica, 000133 Rome, Italy. Electronic address:
Two forms of nanocellulose-based sensing materials were developed for heavy metal ions (HMIs) detection: all-solid-state and suspension. In these materials, cellulose nanofibers (CNF), isolated from cellulose bleached pulp via homogenization, were employed as a support matrix. For all-solid-state optodes development free-base 5,10,15,20-tetraphenylporphyrin (TPP) and zinc-porphyrin derivative (ZnPC) were deposited on CNF support.
View Article and Find Full Text PDFTalanta
August 2025
College of Chemistry and Environmental Engineering, Institute for Advanced Study, School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China. Electronic address:
17β-estradiol (E2) and estriol (E3), as natural estrogen contaminants in aquatic environments, have significant risks to ecosystems and human health by disrupting endocrine functions and inducing reproductive disorders even at trace levels. To address the urgent need for simultaneous monitoring of these structurally similar targets, we developed a dual-potential electrochemiluminescence (ECL) immunosensor for efficient parallel detection of E2 and E3. The sensor employs poly (1-naphthylamine)-molybdenum disulfide decorated with gold-silver bimetallic nanoclusters (PNA-MoS@AuAg NCs) as an ECL emitter, utilizing the self-enhancing property of AuAg NCs for intermolecular charge transfer and dual-potential-responsive properties to generate two well-resolved ECL signals (-0.
View Article and Find Full Text PDFBiosens Bioelectron
December 2025
Integrative Biomedical Materials and Nanomedicine Laboratory, Medicine and Life Sciences Department, Universitat Pompeu Fabra, Carrer Del Doctor Aiguader 88, 08003, Barcelona, Spain. Electronic address:
Labile Zn is emerging as a quantitative driver, not just a biomarker, of metastasis, yet rapid, second-resolved intracellular measurement remains elusive. Here we engineer terpyridine-functionalised, hollow Au@SiO nanocapsules (NCs@TPY) and couple their SERS signal to cell-specific partial-least-squares (PLS) chemometrics, yielding an 8-log dynamic range (10 - 10 M), a low-nanomolar detection limit and ≤4.5 % cross-validated error while rejecting Ca/Mg interference.
View Article and Find Full Text PDFPharmaceuticals (Basel)
July 2025
Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes.
View Article and Find Full Text PDF