98%
921
2 minutes
20
High-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens. This action of estrogen can explain the reduced breast cancer incidence in postmenopausal women over 60 who are taking conjugated equine estrogens and the beneficial effect of low-dose estrogen treatment of patients with acquired aromatase inhibitor resistance in clinical trials. To decipher the molecular mechanism of estrogens at the estrogen receptor (ER) complex by different types of estrogens-planar [17-estradiol (E)] and angular triphenylethylene (TPE) derivatives-we have synthesized a small series of compounds with either no substitutions on the TPE phenyl ring containing the antiestrogenic side chain of endoxifen or a free hydroxyl. In the first week of treatment with E the LTED cells undergo apoptosis completely. By contrast, the test TPE derivatives act as antiestrogens with a free para-hydroxyl on the phenyl ring that contains an antiestrogenic side chain in endoxifen. This inhibits early E-induced apoptosis if a free hydroxyl is present. No substitution at the site occupied by the antiestrogenic side chain of endoxifen results in early apoptosis similar to planar E The TPE compounds recruit coregulators to the ER differentially and predictably, leading to delayed apoptosis in these cells. SIGNIFICANCE STATEMENT: In this paper we investigate the role of the structure-function relationship of a panel of synthetic triphenylethylene (TPE) derivatives and a novel mechanism of estrogen-induced cell death in breast cancer, which is now clinically relevant. Our study indicates that these TPE derivatives, depending on the positioning of the hydroxyl groups, induce various conformations of the estrogen receptor's ligand-binding domain, which in turn produces differential recruitment of coregulators and subsequently different apoptotic effects on the antiestrogen-resistant breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294906 | PMC |
http://dx.doi.org/10.1124/mol.120.119776 | DOI Listing |
Stem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Ann Surg Oncol
September 2025
Department of Surgery, Division of Surgical Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
Ann Surg Oncol
September 2025
Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey.
Breast Cancer Res Treat
September 2025
Department of Pharmacy, Duke University Hospital, Durham, NC, USA.
Purpose: Limited data is available assessing sequencing of antibody drug conjugates (ADCs) in patients with hormone receptor-positive (HR +), human epidermal growth factor 2 (HER2)-negative, HER2-low, and triple-negative metastatic breast cancer (MBC), including patients with brain metastases (BrM) or leptomeningeal disease (LMD). This study assesses the efficacy and safety of sequential sacituzumab govitecan (SG) and trastuzumab deruxtecan (T-DXd) in MBC and impact on chemotherapy (CTX).
Methods: This is a single-center, retrospective, cohort study in adult patients with HR + , HER2-negative, or low MBC who received T-DXd and/or SG.