Embryo and larval development of the yellow clam Mesodesma mactroides (Reeve, 1854) (Mesodesmatidae) in laboratory.

An Acad Bras Cienc

Laboratório de Imunologia e Patologia de Organismos Aquáticos/LIPOA, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The yellow clam Mesodesma mactroides (Reeve, 1854) is a sand mollusc with historical and socioeconomic importance in Brazil, Uruguay and Argentina. A guaranteed form to access a successful reestablishment of the species in their natural environment is directly linked to their reproduction biology. Then, our report introduces the embryonic and larval development of the yellow clam reared in laboratory for such purposes. M. mactroides broodstock were selected as specimens who possess a mean total shell length and weight of 66 ± 3.82 mm and 27.15 ± 4.07 g for an afterwards spawn induction through stripping technique. Regarding the embryonic development, newly fertilized oocytes exhibited a mean diameter of 51.20 ± 6.64 μm. The first polar corpuscle, trochophores and D-veliger appeared at 20 min, 18 and 24 h after fertilization, respectively. Umbonate and pediveliger larvae were noticed on the 8th and 25th day, respectively, with complete metamorphosis occurring only at the 27th day, when all larvae were retained in a 200 μm nylon mesh. Therefore, with that basic understanding of the embryonic and larval development of M. mactroides in the laboratory, forwards studies will focus in establish a technological package for this species.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765202020190053DOI Listing

Publication Analysis

Top Keywords

larval development
12
yellow clam
12
development yellow
8
clam mesodesma
8
mesodesma mactroides
8
mactroides reeve
8
reeve 1854
8
embryonic larval
8
embryo larval
4
development
4

Similar Publications

Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.

View Article and Find Full Text PDF

Crowding can result in greater disease transmission, yet crowded hosts may also remove infectious propagules from the environment, thereby lowering the encounter rate and infectious dose received by conspecifics. We combined experimental and modelling work to examine the impact of crowding of butterfly larvae on the per-capita risk of infection by a protozoan that is transmitted via the larval food plant, and the resulting infection load in adult butterflies. We reared larvae at different densities and exposed them to low and high doses of parasites.

View Article and Find Full Text PDF

Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF