Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases.

Antioxid Redox Signal

Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. 34, 784-799.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2020.8105DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
interplay oxidative
8
prostanoids
8
cardiovascular diseases
8
stress coxs
8
coxs prostanoids
8
stress
5
stress cyclooxygenases
4
cyclooxygenases prostanoids
4
cardiovascular
4

Similar Publications

Dual function of itaconic acid from against .

Plant Dis

September 2025

Shenyang Agricultural University, College of Plant Protection, Nematology Institute of Northern China, Shenyang, China;

Root-knot nematodes (Meloidogyne spp.) cause catastrophic yield losses in global agriculture. This study identified itaconic acid (IA), through comparative metabolomic analysis (the study of small molecules in biological systems), as a key virulence-related metabolite produced by the fungus Trichoderma citrinoviride Snef1910.

View Article and Find Full Text PDF

This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF