98%
921
2 minutes
20
Purpose: Tracer kinetic modeling of tissue time activity curves and the individual input function based on arterial blood sampling and metabolite correction is the gold standard for quantitative characterization of microglia activation by PET with the translocator protein (TSPO) ligand F-GE-180. This study tested simplified methods for quantification of F-GE-180 PET.
Methods: Dynamic F-GE-180 PET with arterial blood sampling and metabolite correction was performed in five healthy volunteers and 20 liver-transplanted patients. Population-based input function templates were generated by averaging individual input functions normalized to the total area under the input function using a leave-one-out approach. Individual population-based input functions were obtained by scaling the input function template with the individual parent activity concentration of F-GE-180 in arterial plasma in a blood sample drawn at 27.5 min or by the individual administered tracer activity, respectively. The total F-GE-180 distribution volume (V) was estimated in 12 regions-of-interest (ROIs) by the invasive Logan plot using the measured or the population-based input functions. Late ROI-to-whole-blood and ROI-to-cerebellum ratio were also computed.
Results: Correlation with the reference V (with individually measured input function) was very high for V with the population-based input function scaled with the blood sample and for the ROI-to-whole-blood ratio (Pearson correlation coefficient = 0.989 ± 0.006 and 0.970 ± 0.005). The correlation was only moderate for V with the population-based input function scaled with tracer activity dose and for the ROI-to-cerebellum ratio (0.653 ± 0.074 and 0.384 ± 0.177). Reference V, population-based V with scaling by the blood sample, and ROI-to-whole-blood ratio were sensitive to the TSPO gene polymorphism. Population-based V with scaling to the administered tracer activity and the ROI-to-cerebellum ratio failed to detect a polymorphism effect.
Conclusion: These results support the use of a population-based input function scaled with a single blood sample or the ROI-to-whole-blood ratio at a late time point for simplified quantitative analysis of F-GE-180 PET.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651670 | PMC |
http://dx.doi.org/10.1007/s00259-020-04810-1 | DOI Listing |
Front Comput Neurosci
August 2025
Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.
Artificial neural networks are limited in the number of patterns that they can store and accurately recall, with capacity constraints arising from factors such as network size, architectural structure, pattern sparsity, and pattern dissimilarity. Exceeding these limits leads to recall errors, eventually leading to catastrophic forgetting, which is a major challenge in continual learning. In this study, we characterize the theoretical maximum memory capacity of single-layer feedforward networks as a function of these parameters.
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
Neuronal networks in animal brains are considered to realize specific filter functions through the precise configuration of synaptic weights, which are autonomously regulated without external supervision. In this study, we employ a single Hodgkin-Huxley-type neuron with autapses as a minimum model to computationally investigate how spike-timing-dependent plasticity (STDP) adjusts synaptic weights through recurrent feedback. The results show that the weights undergo oscillatory potentiation or depression with respect to autaptic delay and high-frequency stimulation.
View Article and Find Full Text PDFTemperature (Austin)
June 2025
Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Sweating is a vital thermoregulatory mechanism in humans for maintaining thermal balance during exercise and exposure to hot environments. The development of models that predict sweat rate based on body temperature has been ongoing for over half a century. Here, we compared predicted water loss rates (WLR) from these models to actual observations collected during 780 participant-exposures in three independent laboratory-based experiments.
View Article and Find Full Text PDFAnalyst
September 2025
Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Photo-responsive systems provide a powerful tool to reversibly regulate enzyme activity. However, inhibitor-based strategies, though widely used, are often restricted to specific enzymes. Noninhibitor strategies, such as enzyme surface modification or genetic mutation, often compromise structural integrity or residual activity.
View Article and Find Full Text PDF