Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peritoneal spread indicates poor prognosis in patients with serous ovarian carcinoma (SOC) and is generally treated by surgical cytoreduction and chemotherapy. Novel treatment options are urgently needed to improve patient outcome. Clinically relevant cell lines and patient-derived xenograft (PDX) models are of critical importance to therapeutic regimen evaluation. Here, a PDX model was established, by orthotopic engraftment after subperitoneal tumor slurry injection of low-grade SOC, resulting in an early-stage transplantable peritoneal metastasis (PM)-PDX model. Histology confirmed the micropapillary and cribriform growth pattern with intraluminal tumor budding and positivity for PAX8 and WT1. PM-PDX dissociated cells show an epithelial morphotype with a 42 h doubling time and 40% colony forming efficiency, they are low sensitive to platinum derivatives and highly sensitive to paclitaxel (IC50: 6.3 ± 2.2 nM, mean ± SEM). The patient primary tumor, PM, PM-PDX and derived cell line all show a KRAS c.35 G > T (p.(Gly12Val)) mutation and show sensitivity to the MEK inhibitor trametinib in vitro (IC50: 7.2 ± 0.5 nM, mean ± SEM) and in the PM mouse model. These preclinical models closely reflecting patient tumors are useful to further elucidate LGSOC disease progression, therapy response and resistance mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174384PMC
http://dx.doi.org/10.1038/s41598-020-63738-6DOI Listing

Publication Analysis

Top Keywords

patient-derived xenograft
8
xenograft pdx
8
peritoneal metastasis
8
serous ovarian
8
ovarian carcinoma
8
establishment characterization
4
characterization cell
4
cell patient-derived
4
pdx peritoneal
4
metastasis low-grade
4

Similar Publications

pH-responsive activation of Tet-On inducible CAR-T cells enables spatially selective treatment of targeted solid tumors at reduced safety risk.

Natl Sci Rev

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.

Chimeric antigen receptor T (CAR-T)-cell therapy is a promising resolution for solid tumors, but its corresponding clinical translation has been hindered by unsatisfactory therapeutic potency and severe cytokine release syndrome. Herein, tetracycline (Tet)-On inducible human epidermal growth factor receptor 1 (HER1)-targeted CAR-T (Tet-HER1-CAR-T) cells were engineered to enable spatially selective activation at tumor sites by doxycycline (Doxy), which is delivered by pH-responsive stealth liposomal calcium carbonate nanoparticles (Doxy@CaCO-PEG). Compared with the intravenous administration of conventional HER1-CAR-T cells and Tet-HER1-CAR-T cells activated by free Doxy, concurrent intravenous administration of Tet-HER1-CAR-T cells and Doxy@CaCO-PEG leads to the localized tumor activation of Tet-HER1-CAR-T cells and reduced systemic secretion of inflammatory cytokines.

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.

View Article and Find Full Text PDF

Exosomal Proteome from Hepatocellular Carcinoma Patient-Derived Xenograft Mice Serves as Identity of Liver Cancer.

J Proteome Res

September 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.

Hepatocellular carcinoma (HCC) constitutes approximately 90% of liver cancers, yet its early detection remains challenging due to the low sensitivity of current diagnostic methods and the difficulty in identifying minimal cancer cells within the body. This study employed a patient-derived xenograft (PDX) mouse model to screen for biomarkers, leveraging its advantage of low background interference compared to human serum exosome studies. Using a novel microextraction technique, exosomes were isolated from just one microliter of serum from HCC PDX mice, followed by proteomic profiling.

View Article and Find Full Text PDF

Discovery of APS03118, a Potent and Selective Next-Generation RET Inhibitor with a Novel Kinase Hinge Scaffold.

J Med Chem

September 2025

Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.

This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.

View Article and Find Full Text PDF