98%
921
2 minutes
20
Background: Accurate lung cancer classification is crucial to guide therapeutic decisions. However, histological subtyping by pathologists requires tumor tissue-a necessity that is often intrinsically associated with procedural difficulties. The analysis of circulating tumor DNA present in minimal-invasive blood samples, referred to as liquid biopsies, could therefore emerge as an attractive alternative.
Methods: Concerning adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, our proof of concept study investigates the potential of liquid biopsy-derived copy number alterations, derived from single-end shallow whole-genome sequencing (coverage 0.1-0.5×), across 51 advanced stage lung cancer patients.
Results: Genomic abnormality testing reveals anomalies in 86.3% of the liquid biopsies (16/20 for adenocarcinoma, 13/16 for squamous cell, and 15/15 for small cell carcinoma). We demonstrate that copy number profiles from formalin-fixed paraffin-embedded tumor biopsies are well represented by their liquid equivalent. This is especially valid within the small cell carcinoma group, where paired profiles have an average Pearson correlation of 0.86 (95% CI 0.79-0.93). A predictive model trained with public data, derived from 843 tissue biopsies, shows that liquid biopsies exhibit multiple deviations that reflect histological classification. Most notably, distinguishing small from non-small cell lung cancer is characterized by an area under the curve of 0.98 during receiver operating characteristic analysis. Additionally, we investigated how deeper paired-end sequencing, which will eventually become feasible for routine diagnosis, empowers tumor read enrichment by insert size filtering: for all of the 29 resequenced liquid biopsies, the tumor fraction could be increased in silico, thereby "rescuing" three out of five cases with previously undetectable alterations.
Conclusions: Copy number profiling of cell-free DNA enables histological classification. Since shallow whole-genome sequencing is inexpensive and often fully operational at routine molecular laboratories, this finding has current diagnostic potential, especially for patients with lesions that are difficult to reach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175544 | PMC |
http://dx.doi.org/10.1186/s13073-020-00735-4 | DOI Listing |
Curr Opin Endocrinol Diabetes Obes
October 2025
Department of Surgery, American Mission Hospital, Manama, Bahrain.
Purpose Of Review: To review the current medical evidence in the diagnosis and management of thyroid nodules.
Recent Findings: The widespread use of imaging modalities in recent years has led to frequent discovery of incidental thyroid nodules. These nodules are mostly benign (over 90%), hence precise insight in evaluating nodules of concern and following up other nodules is important to avoid unnecessary surgeries and its complications.
Nanoscale
September 2025
School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China. Electronic address:
Malignant tumors present a major global health burden, as they generally have a poor prognosis, and the efficacy of available treatments is limited. Copine family members (CPNEs) play crucial roles in the regulation of tumor cell proliferation, metastasis, and therapeutic resistance, as well as in tumor diagnosis and prognostic risk stratification. CPNEs can facilitate tumor cell survival by regulating cell cycle progression and cell death.
View Article and Find Full Text PDFTransl Oncol
September 2025
Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan; Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan. Electronic address:
Liquid biopsies, particularly those involving circulating tumor DNA (ctDNA) from patient blood, have emerged as crucial and minimally invasive adjuncts to standard tissue-based testing. ctDNA testing enables the identification of actionable mutations for targeted therapy and can be routinely used when tissue samples are unavailable for genotyping. Compared to tissue-based testing, ctDNA testing has the advantages of capturing spatial or temporal genomic heterogeneity and facilitating repeated assessments.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia.
Esophageal cancer (EC) is one of the most serious health issues around the world, ranking seventh among the most lethal types of cancer and eleventh among the most common types of cancer worldwide. Traditional therapies-such as surgery, chemotherapy, and radiation therapy-often yield limited success, especially in the advanced stages of EC, prompting the pursuit of novel and more effective treatment strategies. Immunotherapy has emerged as a promising option; nonetheless, its clinical success is hindered by variable patient responses.
View Article and Find Full Text PDF