Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications.

Cells

School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Published: April 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesenchymal stem cells (MSCs) are being extensively investigated for their potential in tissue engineering and regenerative medicine. However, recent evidence suggests that the beneficial effects of MSCs may be manifest by their released extracellular vesicles (EVs); typically not requiring the administration of MSCs. This evidence, predominantly from pre-clinical in vitro and in vivo studies, suggests that MSC-EVs may exhibit substantial therapeutic properties in many pathophysiological conditions, potentially restoring an extensive range of damaged or diseased tissues and organs. These benefits of MSC EVs are apparently found, regardless of the anatomical or body fluid origin of the MSCs (and include e.g., bone marrow, adipose tissue, umbilical cord, urine, etc). Furthermore, early indications suggest that the favourable effects of MSC-EVs could be further enhanced by modifying the way in which the donor MSCs are cultured (for example, in hypoxic compared to normoxic conditions, in 3D compared to 2D culture formats) and/or if the EVs are subsequently bio-engineered (for example, loaded with specific cargo). So far, few human clinical trials of MSC-EVs have been conducted and questions remain unanswered on whether the heterogeneous population of EVs is beneficial or some specific sub-populations, how best we can culture and scale-up MSC-EV production and isolation for clinical utility, and in what format they should be administered. However, as reviewed here, there is now substantial evidence supporting the use of MSC-EVs in tissue engineering and regenerative medicine and further research to establish how best to exploit this approach for societal and economic benefit is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226943PMC
http://dx.doi.org/10.3390/cells9040991DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
engineering regenerative
12
regenerative medicine
12
mesenchymal stem
8
extracellular vesicles
8
mscs
5
stem cell
4
cell derived
4
derived extracellular
4
tissue
4

Similar Publications

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF

Ruthenium-Catalyzed Intermolecular [2 + 2] Cycloaddition of Unactivated Allenes and Alkynes with Unusual Regioselectivity.

J Am Chem Soc

September 2025

Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.

Described here is an efficient protocol for intermolecular [2 + 2] cycloaddition of unactivated and unsymmetrical allenes and alkynes with unusual regioselectivity, counterintuitively favoring the most hindered isomer. CpRu(MeCN)PF served as a uniquely effective catalyst, providing diverse 3-alkylidenecyclobutenes with a broad scope and good functional group compatibility. Both experiments and DFT studies provided important insights into the mechanism, particularly the unusual regioselectivity.

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF

Cellulosic Flexible Electronic Materials: Recent Advances in Structural Design, Functionalization, and Smart Applications.

Macromol Rapid Commun

September 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.

Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF