98%
921
2 minutes
20
In the 2010s, a novel lectin family with β-trefoil folding has been identified in marine mussels from the family Mytilidae (phylum Mollusca). "MytiLec-1," the lectin described in this chapter, was the first member of this family to be isolated and characterized from the Mediterranean mussel Mytilus galloprovincialis, a commercially and ecologically important species, spread in marine coastal areas worldwide. MytiLec-1 bound to the sugar moiety of globotriose (Gb3: Galα1-4Galβ1-4Glc), an α-galactoside, leading to apoptosis of Gb3-expressing Burkitt's lymphoma cells. Although the primary structure of MytiLec-1 was quite unusual, its three-dimensional structure was arranged as a β-trefoil fold, which is the typical architecture of "Ricin B chain (or R)-type" lectins, which are found in a broad range of organisms. To date, MytiLec-1-like lectins have been exclusively found in a few species of the mollusk family Mytilidae (M. galloprovincialis, M. trossulus, M. californianus, and Crenomytilus grayanus) and in the phylum Brachiopoda. Transcriptome data revealed the presence of different structural forms of mytilectin in mussels, which included prototype and chimera-type proteins. The primary sequence of these lectins did not match any previously described known protein family, leading to their assignment to the new "mytilectin family." We here report the method of purification of this lectin and describe its use in cell biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0430-4_21 | DOI Listing |
Mar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.
View Article and Find Full Text PDFZool Res
September 2025
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China.
Bivalve mollusks represent a taxonomically and economically significant clade within Mollusca. However, the regulatory mechanisms governing their embryonic development remain poorly characterized. The dwarf surf clam ( ), characterized by a short generation time and high fecundity, has recently gained recognition as an ideal model system for bivalve embryological research.
View Article and Find Full Text PDFEcol Evol
September 2025
Aquatic Systems Biology Unit TUM School of Life Sciences, Technical University of Munich Freising Germany.
Historically, the thick-shelled river mussel ( agg. complex) was considered a single, widespread species across Europe. However, recent phylogenetic taxonomic revisions have delineated 12 species from this complex, including (s.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Marine College, Shandong University, Weihai, Shandong 264209, China. Electronic address:
Tralopyril (TP), a representative bromopyrrolonitrile, functions as a broad-spectrum insecticide, raising growing concerns about its potential impact on aquatic organisms and human intestinal health. However, the key targets and toxicity mechanisms underlying TP-induced enteritis remain unclear. In this study, we utilized network toxicology combined with molecular docking to comprehensively explore the potential molecular mechanisms underlying TP-induced enteritis.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China. Electronic address:
Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.
View Article and Find Full Text PDF