Ecology of microplastics contamination within food webs of estuarine and coastal ecosystems.

MethodsX

Programa de Pós-graduação em Planejamento Territorial e Desenvolvimento Socioambiental (PPGPLAN/FAED), Grupo de Gestão, Ecologia e Tecnologia Marinha (GTMar), Departamento de Engenharia de Pesca e Ciências Biológicas (DEPB), Universidade do Estado de Santa Catarina (UDESC), Laguna, Santa Catar

Published: March 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim was to describe a methodology developed to study the relationship among the spatio-temporal patterns of habitat utilization, feeding ecology and microplastics (MPs) contamination across the different ontogenetic phases of fishes belonging to different trophic levels and living along the riverine-estuarine-coastal food web. The Goiana Estuary's water column was examined for the seasonal and spatial variation of MPs and their quantification relative to zooplankton, demersal fish species contamination following the same sampling design. The density of MPs in the water column determines their bioavailability. Interest in studies on MPs distribution in relation to spatial and temporal variation of environmental factors and fauna are increasing in quantity and quality. If the ecological strategies presented in this study were replicated in other estuary, comparisons could be made in order to describe how ecosystems work. Standard protocols for sampling, extraction, enumeration and classification of MPs and others pollutant ingested by fishes have been developed and are presented here to encourage comparisons. Standardized and comparable sampling designs and laboratory procedures are an important strategy in order to devise and transfer managerial solutions among different sites and comparisons along time when studying the same environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152700PMC
http://dx.doi.org/10.1016/j.mex.2020.100861DOI Listing

Publication Analysis

Top Keywords

ecology microplastics
8
water column
8
mps
5
microplastics contamination
4
contamination food
4
food webs
4
webs estuarine
4
estuarine coastal
4
coastal ecosystems
4
ecosystems aim
4

Similar Publications

Adsorption behavior and neurotoxic synergy of thallium and polystyrene microplastics in Caenorhabditis elegans.

Aquat Toxicol

September 2025

State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:

Microplastics (MPs) have emerged as ubiquitous environmental contaminants, while thallium (Tl), a highly toxic metalloid, is gaining attention as a novel pollutant due to its increasing release from electronic waste and mining activities. These pollutants frequently coexist in aquatic environments; however, their combined effects at environmentally relevant concentrations remain poorly understood. In this study, the adsorption behavior and joint neurotoxicity of polystyrene (PS) microplastics and Tl were systematically evaluated using Caenorhabditis elegans as a model organism.

View Article and Find Full Text PDF

Succession-driven potential functional shifts in microbial communities in the Tire-plastisphere:Comparison of pristine and scrap tire.

Environ Pollut

September 2025

Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog

Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging vectors for hydrophobic organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), in aquatic environments. Due to their high surface area and sorption potential, MPs can enhance the environmental persistence and bioavailability of toxic compounds, posing potential risks to both aquatic organisms and human health. This study investigates the distribution, sorption behavior, and effects on pollutant transport, distribution, and exposure pathways of PAHs-contaminated microplastics in two major Romanian rivers: the Prahova and Ialomita.

View Article and Find Full Text PDF

Microplastic Diversity as a Potential Driver of Soil Denitrification Shifts.

Environ Sci Technol

September 2025

State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Microplastics (MPs) are raising significant global concerns due to their environmental impacts. While most studies have focused on the effects of individual MP types, MPs in natural environments typically coexist as multiple types, and their combined effects remain poorly understood. In this study, we conducted a microcosm experiment with four levels of MP diversity (0, 1, 3, and 5 types) to investigate the effects of MP diversity on soil ecosystem functions using metagenomic sequencing.

View Article and Find Full Text PDF

Fe-modified biochar-driven ROS generation in the rhizosphere and their role in microplastic transformation.

J Hazard Mater

September 2025

State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation

Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).

View Article and Find Full Text PDF