Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerous cell types modulate hematopoiesis through soluble and membrane bound molecules. Whether developing hematopoietic progenitors of a particular lineage modulate the differentiation of other hematopoietic lineages is largely unknown. Here we aimed to investigate the influence of myeloid progenitors on CD34 cell differentiation into CD56 innate lymphocytes. Sorted CD34 cells cultured in the presence of stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (FLT3L) give rise to numerous cell types, including progenitors that expressed the prolactin receptor (PRLR). These CD34PRLR myeloid-lineage progenitors were derived from granulocyte monocyte precursors (GMPs) and could develop into granulocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Moreover, CD34PRLR myeloid progenitors lacked lymphoid developmental potential, but when stimulated with prolactin (PRL) they increased the differentiation of other CD34 cell populations into the NK lineage in a non-contact dependent manner. Both mRNA and protein analyses show that PRL increased mothers against decapentaplegic homolog 7 (SMAD7) in CD34PRLR myeloid cells, which reduced the production of transforming growth factor beta 1 (TGF-β1), a cytokine known to inhibit CD56 cell development. Thus, we uncover an axis whereby CD34PRLR GMPs inhibit CD56 lineage development through TGF-β1 production and PRL stimulation leads to SMAD7 activation, repression of TGF-β1, resulting in CD56 cell development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156717PMC
http://dx.doi.org/10.1038/s41598-020-63346-4DOI Listing

Publication Analysis

Top Keywords

myeloid progenitors
12
cell
9
stem cell
8
cell differentiation
8
numerous cell
8
cell types
8
cd34 cell
8
cd34prlr myeloid
8
prl increased
8
inhibit cd56
8

Similar Publications

Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.

View Article and Find Full Text PDF

Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q).

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) involves uncontrolled proliferation of myeloid progenitor cells and carries a poor prognosis. The PI3K/AKT/mTOR pathway plays a key role in AML pathogenesis by regulating cancer cell proliferation and survival. This study investigates the effects of inhibiting the PI3K/AKT/mTOR pathway on autophagy in AML cell lines, aiming to support targeted therapy development that modulates autophagy.

View Article and Find Full Text PDF

Sensory neurons shape local macrophage identity via TGF-β signaling.

Immunity

September 2025

Institute for Infection Control and Prevention, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center and Fa

Resident macrophages play integral roles in maintaining tissue homeostasis and function. In the skin, prenatally seeded, specialized macrophages patrol sensory nerves and contribute to their regeneration after injury. However, mechanisms underlying the long-lasting postnatal commitment of these nerve-associated macrophages remain largely elusive.

View Article and Find Full Text PDF