98%
921
2 minutes
20
Objective: To evaluate the prognostic potential of vimentin, p53, EGFR, CK5/6, CK 14, and CK 17 in patients with triple-negative breast cancer (TNBC).
Material And Methods: Tumor specimens of 60 patients with histologically confirmed TNBC were retrospectively analyzed. Formalin-fixed paraffin-embedded blocks of the tumor tissue were used to prepare tissue microarrays (TMAs). After immune-histochemical staining, protein expression of vimentin, p53, EGFR, CK5/6, CK 14, and CK 17 was determined and the immunoreactive score (IRS) was calculated. The protein expression was correlated to overall (OS) and disease-free survival (DFS).
Results: Ninety percent of patients suffered from an invasive ductal carcinoma T1 or T2, 66.7% were N0, and 70% had a G3 tumor with Ki67 of > 14%. Vimentin expression was found in 28/60 patients (46.7%), p53 expression in 30/60 patients (50%), and EGFR expression in 3/60 patients (5%). CK5/6, CK14, and CK17 expression was found in 60.0%, 63.3%, and 66.7%, respectively. Vimentin expression vs no expression was associated with significantly higher mean Ki67 values (52.5% vs. 31.1%; p = 0.0013) and significantly higher p53 expression (67.9% vs. 34.4%; p = 0.0097). No significant association between vimentin expression and OS (p = 0.7710) or DFS (p = 0.5558) was found during a mean follow-up of 92 months.
Conclusion: None of the six proteins proved to be suitable prognostic factors for OS and DSF in patients with TNBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804379 | PMC |
http://dx.doi.org/10.1007/s00432-020-03210-0 | DOI Listing |
Exp Cell Res
September 2025
Department of Nephrology, The First Hospital of China Medical University, Shenyang 110004 Liaoning Province, China. Electronic address:
Renal fibrosis is the common pathological outcome of chronic kidney disease (CKD) progressing into end-stage renal disease. The excessive proliferation of fibroblasts plays an important role in the CKD progression. Nutrients such as amino acids and their transportation are essential for cell proliferation.
View Article and Find Full Text PDFMol Pharmacol
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Genomic Medicine, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Gu
Gastric cancer (GC) is a leading cause of cancer-related deaths globally, with metastasis critically impacting prognosis. Splicing factors are key regulators of tumorigenesis, particularly in metastasis. In this exploratory study, we investigated the role and mechanism of heterogeneous nuclear ribonucleoprotein A/B (HNRNPAB) in GC cell invasion and migration.
View Article and Find Full Text PDFBiophys J
September 2025
Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands. Electronic address:
Plectin is a giant protein of the plakin family that crosslinks the cytoskeleton of mammalian cells. It is expressed in virtually all tissues and its dysfunction is associated with various diseases such as skin blistering. There is evidence that plectin regulates the mechanical integrity of the cytoskeleton in diverse cell and tissue types.
View Article and Find Full Text PDFEur J Cell Biol
August 2025
Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany. Electronic address:
Keratins are the largest and most diverse group of intermediate filament proteins, providing structural integrity and mechanical strength to epithelial cells. Although their assembly as heterodimers is well established, the specific pairing preferences and molecular basis of keratin dimerisation remain largely unknown. Here, we employ a high-throughput computational pipeline that integrates AlphaFold Multimer (AFM) modelling, VoroIF-GNN interaction interface quality assessment, interaction energy calculations and structural comparisons with experimentally solved structures to systematically investigate keratin heterodimerisation and to provide a guideline for further analysis of intermediate filament assembly.
View Article and Find Full Text PDFFront Pharmacol
August 2025
BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal.
Introduction: Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a Cl/HCO ion channel located at the apical plasma membrane (PM) of epithelial cells. CFTR dysfunction disrupts epithelial barrier integrity, drives progressive airway remodelling and has been associated with epithelial-to-mesenchymal transition (EMT), a process in which cells lose epithelial properties and acquire mesenchymal characteristics. We previously demonstrated that mutant CFTR directly drives partial EMT, independently of secondary events such as bacterial infection or inflammation.
View Article and Find Full Text PDF