Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the application of multiphoton microfabrication to prepare conducting polymer (CP)-based biomaterials that were capable of drug delivery and interacting with brain tissue ex vivo, thereby highlighting the potential of multiphoton lithography to prepare electroactive biomaterials which may function as implantable neural biointerfaces (e.g. electrodes).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb00104hDOI Listing

Publication Analysis

Top Keywords

multiphoton microfabrication
8
microfabrication conducting
4
conducting polymer-based
4
polymer-based biomaterials
4
biomaterials report
4
report application
4
application multiphoton
4
microfabrication prepare
4
prepare conducting
4
conducting polymer
4

Similar Publications

A multi-modal neural interface capable of long-term recording and stimulation is essential for advancing brain monitoring and developing targeted therapeutics. Among the traditional electrophysiological methods, micro-electrocorticography (μECoG) is appealing for chronic applications because it provides a good compromise between invasiveness and high-resolution neural recording. When combining μECoG with optical technologies, such as calcium imaging and optogenetics, this multi-modal approach enables the simultaneous collection of neural activity from individual neurons and the ability to perform cell-specific manipulation.

View Article and Find Full Text PDF

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

A 3D micro-printed single cell micro-niche with asymmetric niche signals - An in vitro model for asymmetric cell division study.

Biomaterials

December 2024

Tissue Engineering Laboratory, Biomedical Engineering Program, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China; Tissue Engineering Laboratory, School of Biomedical Sciences, Institute of Tissue Engineering and Regener

Intricate microenvironment signals orchestrate to affect cell behavior and fate during tissue morphogenesis. However, the underlying mechanisms on how specific local niche signals influence cell behavior and fate are not fully understood, owing to the lack of in vitro platform able to precisely, quantitatively, spatially, and independently manipulate individual niche signals. Here, microarrays of protein-based 3D single cell micro-niche (3D-SCμN), with precisely engineered biophysical and biochemical niche signals, are micro-printed by a multiphoton microfabrication and micropatterning technology.

View Article and Find Full Text PDF

Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures.

View Article and Find Full Text PDF

2D and 3D Micropatterning of Mussel-Inspired Functional Materials by Direct Laser Writing.

Small

March 2024

BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany.

This work addresses the critical need for multifunctional materials and substrate-independent high-precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel-inspired materials (MIMs) is combined with state-of-the-art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub-micron to micron resolution and extensive post-functionalization capabilities.

View Article and Find Full Text PDF