98%
921
2 minutes
20
We report the application of multiphoton microfabrication to prepare conducting polymer (CP)-based biomaterials that were capable of drug delivery and interacting with brain tissue ex vivo, thereby highlighting the potential of multiphoton lithography to prepare electroactive biomaterials which may function as implantable neural biointerfaces (e.g. electrodes).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5tb00104h | DOI Listing |
bioRxiv
July 2025
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
A multi-modal neural interface capable of long-term recording and stimulation is essential for advancing brain monitoring and developing targeted therapeutics. Among the traditional electrophysiological methods, micro-electrocorticography (μECoG) is appealing for chronic applications because it provides a good compromise between invasiveness and high-resolution neural recording. When combining μECoG with optical technologies, such as calcium imaging and optogenetics, this multi-modal approach enables the simultaneous collection of neural activity from individual neurons and the ability to perform cell-specific manipulation.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
May 2025
School of Engineering, Brown University, Providence, Rhode Island, USA; email:
The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.
View Article and Find Full Text PDFBiomaterials
December 2024
Tissue Engineering Laboratory, Biomedical Engineering Program, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China; Tissue Engineering Laboratory, School of Biomedical Sciences, Institute of Tissue Engineering and Regener
Intricate microenvironment signals orchestrate to affect cell behavior and fate during tissue morphogenesis. However, the underlying mechanisms on how specific local niche signals influence cell behavior and fate are not fully understood, owing to the lack of in vitro platform able to precisely, quantitatively, spatially, and independently manipulate individual niche signals. Here, microarrays of protein-based 3D single cell micro-niche (3D-SCμN), with precisely engineered biophysical and biochemical niche signals, are micro-printed by a multiphoton microfabrication and micropatterning technology.
View Article and Find Full Text PDFSmall
September 2024
BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany.
Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures.
View Article and Find Full Text PDFSmall
March 2024
BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany.
This work addresses the critical need for multifunctional materials and substrate-independent high-precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel-inspired materials (MIMs) is combined with state-of-the-art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub-micron to micron resolution and extensive post-functionalization capabilities.
View Article and Find Full Text PDF