98%
921
2 minutes
20
Understanding the origin of the magnetism of high temperature superconductors is crucial for establishing their unconventional pairing mechanism. Recently, theory predicts that FeSe is close to a magnetic quantum critical point, and thus weak perturbations such as impurities could induce local magnetic moments. To elucidate such quantum instability, we have employed scanning tunneling microscopy and spectroscopy. In particular, we have grown FeSe film on superconducting Pb(111) using molecular beam epitaxy and investigated magnetic excitation caused by impurities in the proximity-induced superconducting gap of FeSe. Our study provides deep insight into the origin of the magnetic ordering of FeSe by showing the way local magnetic moments develop in response to impurities near the magnetic quantum critical point.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.117001 | DOI Listing |
J Am Coll Health
September 2025
Department of Family Medicine (Student Health), Duke University, Durham, North Carolina, USA.
The authors describe a case of vertebral artery dissection in a patient with Turner Syndrome presenting to a university student health center. Cervical artery dissection (CeAD) is the most common cause of stroke in young adults and should be considered in patients with underlying risk factors. It usually presents with local symptoms caused by compression of adjacent nerves and their feeding vessels, as well as ischemia and hemorrhagic events.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Texas at Austin, Department of Physics, Austin, Texas 78712, USA.
We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Delaware, Department of Physics and Astronomy, Newark, Delaware 19716, USA.
Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4 eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, Hefei, Anhui 230026, China.
The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).
View Article and Find Full Text PDFInorg Chem
September 2025
Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
We report the structural, electrical, and magnetic properties of the organic conductor κ-(BEST)Cu(CN) (BEST: bis(ethylenediseleno)-tetrathiafulvalene; abbreviated as κ-BEST-CN), which is isostructural with the quantum spin liquid candidate κ-(ET)Cu(CN) (ET: bis(ethylenedithio)tetrathiafulvalene; abbreviated as κ-ET-CN). Resistivity measurements demonstrate that κ-BEST-CN exhibits semiconducting behavior, governed by the same conducting mechanism as κ-ET-CN. Under a pressure of ∼0.
View Article and Find Full Text PDF