Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) systems that occur in nature as microbial adaptive immune systems are considered an important tool in assessing the function of genes of interest in various biological systems. Thus, development of efficient and simple methods to produce genome-edited (GE) animals would accelerate research in this field. The CRISPR/Cas9 system was initially employed in early embryos, utilizing classical gene delivery methods such as microinjection or electroporation, which required ex vivo handling of zygotes before transfer to recipients. Recently, novel in vivo methods such as genome editing via oviductal nucleic acid delivery (GONAD), improved GONAD (-GONAD), or transplacental gene delivery for acquiring genome-edited fetuses (TPGD-GEF), which facilitate easy embryo manipulation, have been established. Studies utilizing these techniques employed pregnant female mice for direct introduction of the genome-editing components into the oviduct or were dependent on delivery via tail-vein injection. In mice, embryogenesis occurs within the oviducts and the uterus, which often hampers the genetic manipulation of embryos, especially those at early postimplantation stages (days 6 to 8), owing to a thick surrounding layer of tissue called decidua. In this review, we have surveyed the recent achievements in the production of GE mice and have outlined the advantages and disadvantages of the process. We have also referred to the past achievements in gene delivery to early postimplantation stage embryos and germ cells such as primordial germ cells and spermatogonial stem cells, which will benefit relevant research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226049PMC
http://dx.doi.org/10.3390/cells9040799DOI Listing

Publication Analysis

Top Keywords

germ cells
12
gene delivery
12
early postimplantation
8
delivery
6
advances future
4
future perspectives
4
perspectives vivo
4
vivo targeted
4
targeted delivery
4
delivery genome-editing
4

Similar Publications

Disruption of egg and nymph development via RNAi-mediated Glutamine: fructose-6-phosphate aminotransferase knockdown in Locusta migratoria: A promising strategy for pest management.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China.

Glutamine: fructose-6-phosphate aminotransferase (GFAT) is the first rate-limiting enzyme in the hexosamine biosynthetic pathway, which plays a crucial role in various biological processes, including chitin metabolism in insects. Locusta migratoria, a widespread and highly destructive agricultural pest, poses a significant threat due to its rapid reproduction and long-distance migration. In this study, we identified and characterized LmGFAT as a key regulator of locust development.

View Article and Find Full Text PDF

Globally, the South Asian Cocktail (SAC), a substance of abuse, is becoming popular. The effects of SAC on male fertility are unknown; however, its component pharmaceuticals, such as codeine, rohypnol, and promethazine, have been linked to male infertility. Thus, this study assessed SAC's influence and putative mechanisms on male fertility among SAC consumers.

View Article and Find Full Text PDF

Caffeic acid phenethyl ester disrupts germ layer specification in Xenopus embryos.

Reprod Toxicol

September 2025

Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea. Electronic address:

Xenopus embryo serves as an ideal model for teratogenesis assays to observe the effects of any compounds on the cellular processes crucial for early development and adult tissue homeostasis. In our screening of a chemical library with frog embryo, caffeic acid phenethyl ester (CAPE) was found to upregulate the FGF/MAPK pathway, disrupting germ layer formation in early development. Exposure to CAPE interfered with the formation of anterior-posterior body axis and of ectodermal derivatives such as eyes, dorsal fin and pigment cells.

View Article and Find Full Text PDF

Mosquito reproductive biology is an underexplored area with potential for developing novel vector control strategies. In this study, we investigated the role of the testis-specific serine/threonine-protein kinase (tssk) family, an essential regulator of spermiogenesis in mammals, in mosquitoes. We identified tssk homologues, As_tssk3 and Aea_tssk1, in Anopheles stephensi and Aedes aegypti, respectively and analyzed their expression across different developmental stages.

View Article and Find Full Text PDF

Characterising body and reproductive morphometry and their association with epididymal sperm quality can contribute to the conservation of sambar deer (Rusa unicolor). Five adult males maintained in captivity at the Getúlio Vargas Zoobotanical Park (Salvador, BA, Brazil) were captured, anaesthetised, and subjected to bilateral orchiectomy as part of a population-control strategy. Body measurements included head circumference, thoracic diameter, total length, withers height, and body weight.

View Article and Find Full Text PDF