Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kohlrabi (Brassica oleracea L. var. gongylodes L.) was biofortified with selenium (Se), as selenite and selenate, and iodine (I), as iodide and iodate, and their combinations through foliar spraying, to study absorption of these elements by the plants, separately and in combination. The effects on selected physiological and morphological traits and optical characteristics were monitored. Treatments with Se positively affected total chlorophylls and carotenoids, and leaf stomata dimensions. Addition of I decreased total chlorophylls and increased anthocyanins. In reflectance spectra of the leaves, specific colour regions differed significantly due to the different treatments. Reflectance in the UV correlated positively with Se and I contents of the leaves, which indicated lower demand for production of phenolic compounds. Differences in reflectance in UV part of the spectra could be a consequence of changes in the cuticle. The Se and I levels increased markedly in leaves and tubers, without loss of biomass or yield. Se had antagonistic effects on accumulation of I in leaves. The similar levels of Se and I in the leaves and tubers suggest that the transport of both elements in these plants occurs from the leaves to the tubers through the phloem. According to the Se and I contents in the kohlrabi tubers, biofortification with both elements simultaneously is feasible for human nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.02.044DOI Listing

Publication Analysis

Top Keywords

leaves tubers
12
brassica oleracea
8
oleracea var
8
var gongylodes
8
elements plants
8
total chlorophylls
8
reflectance spectra
8
leaves
6
tubers
5
biofortification selenium
4

Similar Publications

Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.

View Article and Find Full Text PDF

While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization.

View Article and Find Full Text PDF

Background: In China, L. is primarily cultivated for its underground parts-rhizomes (commonly known as turmeric) and tubers (Yujin), with the latter holding greater market value. However, current cultivation practices in China remain largely traditional, lacking scientific optimization in nutrient management, growth cycle alignment, or soil fertility strategies.

View Article and Find Full Text PDF

Enhances Thermotolerance in Potato ( L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress.

Plants (Basel)

July 2025

Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang

The functional role of MAPKK genes in potato ( L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm.

View Article and Find Full Text PDF

Understanding the molecular mechanisms behind plant response to stress can enhance breeding strategies and help us design crop varieties with improved stress tolerance, yield, and quality. To investigate resource redistribution from growth- to defense-related processes in an essential tuber crop, potato, here we generate a large-scale compartmentalized genome-scale metabolic model (GEM), potato-GEM. Apart from a large-scale reconstruction of primary metabolism, the model includes the full known potato secondary metabolism, spanning over 566 reactions that facilitate the biosynthesis of 182 distinct potato secondary metabolites.

View Article and Find Full Text PDF