Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atomically thin semiconductors made from transition metal dichalcogenides (TMDs) are model systems for investigations of strong light-matter interactions and applications in nanophotonics, optoelectronics and valleytronics. However, the photoluminescence spectra of TMD monolayers display a large number of features that are particularly challenging to decipher. On a practical level, monochromatic TMD-based emitters would be beneficial for low-dimensional devices, but this challenge is yet to be resolved. Here, we show that graphene, directly stacked onto TMD monolayers, enables single and narrow-line photoluminescence arising solely from TMD neutral excitons. This filtering effect stems from complete neutralization of the TMD by graphene, combined with selective non-radiative transfer of long-lived excitonic species to graphene. Our approach is applied to four tungsten- and molybdenum-based TMDs and establishes TMD/graphene heterostructures as a unique set of optoelectronic building blocks that are suitable for electroluminescent systems emitting visible and near-infrared photons at near THz rate with linewidths approaching the homogeneous limit.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-020-0644-2DOI Listing

Publication Analysis

Top Keywords

photoluminescence spectra
8
atomically thin
8
thin semiconductors
8
tmd monolayers
8
filtering photoluminescence
4
spectra atomically
4
graphene
4
semiconductors graphene
4
graphene atomically
4
semiconductors transition
4

Similar Publications

Pressure-Driven Structural and Optoelectronic Tuning of Cl-Substituted 2D Lead Halide Perovskite (ClPMA)PbI.

J Phys Chem Lett

September 2025

Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.

View Article and Find Full Text PDF

Pure-Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers with Discontinuous Fused Benzene Rings.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).

View Article and Find Full Text PDF

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.

View Article and Find Full Text PDF

Phosphors, as the crucial material of phosphor-converted white light-emitting diodes (pc-WLEDs), have played an essential role in improving luminescent efficiency and regulating color rendering index (CRI). Hence, we have successfully synthesized a novel Eu doped Sr(AlO)(WO) (SAWO) green phosphor for the first time using the solid-state reaction, as well as systematically investigated its phase and crystal structure, luminescent properties, and thermal stability. The SAWO:x mol%Eu (0.

View Article and Find Full Text PDF