A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: A spatially explicit carbon bookkeeping model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reducing terrestrial carbon emissions to the atmosphere requires accurate measuring, reporting and verification of land surface activities that emit or sequester carbon. Many carbon accounting practices in use today provide only regionally aggregated estimates and neglect the spatial variation of pre-disturbance forest conditions and post-disturbance land cover dynamics. Here, we present a spatially explicit carbon bookkeeping model that utilizes a high-resolution map of aboveground biomass and land cover dynamics derived from time series analysis of Landsat data. The model produces estimates of carbon emissions/uptake with model uncertainty at Landsat resolution. In a case study of the Colombian Amazon, an area of 47 million ha, the model estimated total emissions of 3.97 ± 0.71 Tg C yr and uptake by regenerating forests of 1.11 ± 0.23 Tg C yr 2001-2015, with an additional 45.1 ± 7.99 Tg of carbon remaining in the form of woody products, decomposing slash and charcoal at the end of 2015 (estimates provided with ±95% confidence intervals). Total emissions attributed to the study period (including carbon not yet released) is 6.97 ± 1.24 Tg C yr. The presented model is based on recent technological advancements in the field of remote sensing to achieve spatially explicit modeling of carbon emissions and uptake associated with land surface changes and post-disturbance landscapes that is compliant with international reporting criteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137409DOI Listing

Publication Analysis

Top Keywords

carbon emissions
12
spatially explicit
12
carbon
10
emissions uptake
8
time series
8
series analysis
8
analysis landsat
8
landsat data
8
explicit carbon
8
carbon bookkeeping
8

Similar Publications