98%
921
2 minutes
20
Background: Critical limb ischemia (CLI) is a severe stage of peripheral arterial disease and has a substantial disease and economic burden not only to patients and families, but also to the society and healthcare systems. We aim to develop a personalized prediction model that utilizes baseline patient characteristics prior to CLI diagnosis to predict subsequent 1-year all-cause hospitalizations and total annual healthcare cost, using a novel Bayesian machine learning platform, Reverse Engineering Forward Simulation™ (REFS™), to support a paradigm shift from reactive healthcare to Predictive Preventive and Personalized Medicine (PPPM)-driven healthcare.
Methods: Patients ≥ 50 years with CLI plus clinical activity for a 6-month pre-index and a 12-month post-index period or death during the post-index period were included in this retrospective cohort of the linked Optum-Humedica databases. REFS™ built an ensemble of 256 predictive models to identify predictors of all-cause hospitalizations and total annual all-cause healthcare costs during the 12-month post-index interval.
Results: The mean age of 3189 eligible patients was 71.9 years. The most common CLI-related comorbidities were hypertension (79.5%), dyslipidemia (61.4%), coronary atherosclerosis and other heart disease (42.3%), and type 2 diabetes (39.2%). Post-index CLI-related healthcare utilization included inpatient services (14.6%) and ≥ 1 outpatient visits (32.1%). Median annual all-cause and CLI-related costs per patient were $30,514 and $2196, respectively. REFS™ identified diagnosis of skin and subcutaneous tissue infections, cellulitis and abscess, use of nonselective beta-blockers, other aftercare, and osteoarthritis as high confidence predictors of all-cause hospitalizations. The leading predictors for total all-cause costs included region of residence and comorbid health conditions including other diseases of kidney and ureters, blindness of vision defects, chronic ulcer of skin, and chronic ulcer of leg or foot.
Conclusions: REFS™ identified baseline predictors of subsequent healthcare resource utilization and costs in CLI patients. Machine learning and model-based, data-driven medicine may complement physicians' evidence-based medical services. These findings also support the PPPM framework that a paradigm shift from post-diagnosis disease care to early management of comorbidities and targeted prevention is warranted to deliver a cost-effective medical services and desirable healthcare economy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028871 | PMC |
http://dx.doi.org/10.1007/s13167-019-00196-9 | DOI Listing |
JMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFJ Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.
JMIR Med Inform
September 2025
College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.
Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.
View Article and Find Full Text PDFJMIR AI
September 2025
Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.
Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.
Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.
Methods: A systematic review was performed.