Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-throughput sequencing (HTS) of gene amplicons is a preferred method of assessing microbial community composition, because it rapidly provides information from a large number of samples at high taxonomic resolution and low costs. However, mock community studies show that HTS data poorly reflect the actual relative abundances of individual phylotypes, casting doubt on the reliability of subsequent statistical analysis and data interpretation. We investigated how accurately HTS data reflect the variability of bacterial and eukaryotic community composition and their relationship with environmental factors in natural samples. For this, we compared results of HTS from three independent aquatic time series ( = 883) with those from an established, quantitative microscopic method (catalyzed reporter deposition-fluorescence hybridization [CARD-FISH]). Relative abundances obtained by CARD-FISH and HTS disagreed for most bacterial and eukaryotic phylotypes. Nevertheless, the two methods identified the same environmental drivers to shape bacterial and eukaryotic communities. Our results show that amplicon data do provide reliable information for their ecological interpretations. Yet, when studying specific phylogenetic groups, it is advisable to combine HTS with quantification using microscopy and/or the addition of internal standards. High-throughput sequencing (HTS) of amplified fragments of rRNA genes provides unprecedented insight into the diversity of prokaryotic and eukaryotic microorganisms. Unfortunately, HTS data are prone to quantitative biases, which may lead to an erroneous picture of microbial community composition and thwart efforts to advance its understanding. These concerns motivated us to investigate how accurately HTS data characterize the variability of microbial communities, the relative abundances of specific phylotypes, and their relationships with environmental factors in comparison to an established microscopy-based method. We compared results obtained by HTS and catalyzed reporter deposition-fluorescence hybridization (CARD-FISH) from three independent aquatic time series for both prokaryotic and eukaryotic microorganisms (almost 900 data points, the largest obtained with both methods so far). HTS and CARD-FISH data disagree with regard to relative abundances of bacterial and eukaryotic phylotypes but identify similar environmental drivers shaping bacterial and eukaryotic communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056804PMC
http://dx.doi.org/10.1128/mSphere.00052-20DOI Listing

Publication Analysis

Top Keywords

bacterial eukaryotic
24
hts data
16
relative abundances
16
community composition
12
hts
11
data
9
amplicon data
8
data provide
8
picture microbial
8
microbial communities
8

Similar Publications

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

Introduction: Erysipelas is a common disease in the emergency department, whereas necrotising soft tissue infections (NSTIs) are rare but more severe. The study aimed to investigate the prevalence, incidence, population-based incidence rate, one-year mortality and clinical presentation of erysipelas and NSTIs, and the aetiology, treatment and recurrence of erysipelas.

Methods: This was a population-based cohort study including acute non-trauma patients ≥ 18 years old with erysipelas or NSTIs from the Region of Southern Denmark in the period from 1 January 2016 to 19 March 2018.

View Article and Find Full Text PDF

Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

Introduction: is a spiral-shaped Gram-negative, enterohepatic bacterium classified as a conditional pathogen (pathogenicity group 2). It is known to cause bacteremia and a variety of other diseases in humans. In particular, has been shown to impair intracellular cholesterol metabolism when interacting with macrophages, leading to foam cell formation.

View Article and Find Full Text PDF