Acemannan Induced Bone Regeneration in Lateral Sinus Augmentation Based on Cone Beam Computed Tomographic and Histopathological Evaluation.

Case Rep Dent

Department of Anatomy, Multidisciplinary Dental Biomaterials Science Program, Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acemannan, the major polysaccharide extracted from Aloe vera, is biomaterial that has demonstrated osteoinductive effects and However, the effect of acemannan sponges on bone formation in open-type sinus augmentation has not evaluated. Here, we report a case study using radiographic and histological analyses to investigate the effect of acemannan on bone formation after lateral sinus lift surgery. The case was a 57-year-old female patient with an atrophic left posterior maxilla who underwent lateral sinus lift using an acemannan sponge using the two-stage procedure. In the first stage, an acemannan sponge was inserted through the bony window and placed between the antral floor and the elevated sinus membrane. Cone beam computed tomography (CBCT) images were taken immediately as baseline and 6-month postoperation for evaluation. A bone core specimen was also obtained for histological examination at the time of implant placement. The histological results revealed new bone formation, and the CBCT images demonstrated increased alveolar bone height at 6-month postoperation. Our findings suggest that an acemannan sponge could be a biomaterial for inducing bone formation in sinus lift surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044473PMC
http://dx.doi.org/10.1155/2020/1675653DOI Listing

Publication Analysis

Top Keywords

bone formation
16
lateral sinus
12
sinus lift
12
acemannan sponge
12
sinus augmentation
8
cone beam
8
beam computed
8
lift surgery
8
cbct images
8
6-month postoperation
8

Similar Publications

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Construction of Silver-Calcium Micro-Galvanic Cell on Titanium for Immunoregulation Osteogenesis.

BME Front

September 2025

State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.

View Article and Find Full Text PDF

Progress in immunoregulatory mechanisms during distraction osteogenesis.

Front Bioeng Biotechnol

August 2025

Department of Orthopaedic and Reconstructive Surgery/Pediatric Orthopaedics, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.

Distraction osteogenesis (DO) is an endogenous bone tissue engineering technique that harnesses the regenerative potential of bone and has been widely applied in limb lengthening, bone defect repair, and craniofacial reconstruction. The DO procedure consists of three distinct phases: the latency phase, the distraction phase, and the consolidation phase, each characterized by unique biological processes. In recent years, increasing attention has been directed toward the role of the immune system during DO.

View Article and Find Full Text PDF