98%
921
2 minutes
20
Germline PTPN11 mutations cause Noonan syndrome (NS), the most common disorder among RASopathies. PTPN11 encodes SHP2, a protein tyrosine-phosphatase controlling signaling through the RAS-MAPK and PI3K-AKT pathways. Generally, NS-causing PTPN11 mutations are missense changes destabilizing the inactive conformation of the protein or enhancing its binding to signaling partners. Here, we report on two PTPN11 variants resulting in the deletion or duplication of one of three adjacent glutamine residues (Gln -to-Gln ). While p.(Gln257dup) caused a typical NS phenotype in carriers of a first family, p.(Gln257del) had incomplete penetrance in a second family. Missense mutations involving Gln had previously been reported in NS. This poly-glutamine stretch is located on helix B of the PTP domain, a region involved in stabilizing SHP2 in its autoinhibited state. Molecular dynamics simulations predicted that changes affecting this motif perturb the SHP2's catalytically inactive conformation and/or substrate recognition. Biochemical data showed that duplication and deletion of Gln variably enhance SHP2's catalytic activity, while missense changes involving Gln affect substrate specificity. Expression of mutants in HEK293T cells documented their activating role on MAPK signaling, uncoupling catalytic activity and modulation of intracellular signaling. These findings further document the relevance of helix B in the regulation of SHP2's function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.24007 | DOI Listing |
JCEM Case Rep
October 2025
Department of Pediatrics, Rhode Island Hospital/Hasbro Children's, Brown University Health, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
Individuals with Noonan syndrome (NS) are predisposed to hematologic cancers, solid tumors, and low-grade gliomas. We report an 8-year-old girl originally referred at age 14 months for short stature, developmental delay, and failure to thrive who was subsequently found to have pathogenetic variants both in and Family history included a maternal half-sister with NS and a mother carrying the mutation. Familial single-gene testing showed a heterozygous pathogenic variant in (c.
View Article and Find Full Text PDFCancers (Basel)
August 2025
Department of Medicine, Division of Hematology/Oncology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
This study investigates genomic alterations (GA) between NPM1-mutated (NPM1mut) and wild-type (NPM1wt) acute myeloid leukemia (AML), aiming to better understand the AML genomic profile. NPM1mut AML represents a distinct clinical AML subtype with high relapse rates despite initial responsiveness to chemotherapy. A total of 4206 AML cases from 2019 to 2024 were analyzed using the FoundationOne Heme assay, incorporating comprehensive DNA and RNA sequencing.
View Article and Find Full Text PDFCirc Genom Precis Med
August 2025
Department of Medical Genetics, Hallym University College of Medicine, Chuncheon, Republic of Korea.
Background: Congenital heart disease (CHD) is the most common heterogeneous birth defect, with prevalence varying across populations. A comprehensive meta-analysis could refine the genetic risk estimates and enhance our understanding of CHD susceptibility.
Methods: We conducted a meta-analysis of 175 case-control studies investigating 107 genetic variants across 72 gene regions.
Proc Natl Acad Sci U S A
September 2025
Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520.
Noonan syndrome with multiple lentigines (NSML) is a rare autosomal dominant disorder caused by mutations in (protein tyrosine phosphatase nonreceptor type 11) which encodes for the protein tyrosine phosphatase, SHP2. Approximately 85% of NSML patients develop hypertrophic cardiomyopathy (HCM). Here, we show that SHP2 is recruited to tyrosyl phosphorylated protein-zero related (PZR) in NSML mice.
View Article and Find Full Text PDFCereb Cortex
August 2025
Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, School of Medicine, 1520 Page Mill Road, Palo Alto, CA 94304, United States.
Noonan syndrome is the most common RASopathy and is associated with high rates of neurodevelopmental disorders. Prior neuroimaging studies in children with Noonan syndrome have identified structural effects on subcortical regions, though most focus on volumetric differences, overlooking finer morphological changes. These studies also tend to examine common genetic variants, excluding rarer forms within the Noonan syndrome spectrum.
View Article and Find Full Text PDF