Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Globally, carbon-rich mangrove forests are deforested and degraded due to land-use and land-cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25-years LULCC chronosequence. Field-based assessments were conducted across 255 plots covering undisturbed and LULCC-affected mangroves (0-, 5-, 10-, 15- and 25-year-old post-harvest or regenerating forests as well as 15-year-old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182-2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha  year . This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long-term land-use changes affect carbon loss and gain to a substantial degree. Therefore, current land-based climate policies must incorporate landscape and land-use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217146PMC
http://dx.doi.org/10.1111/gcb.15056DOI Listing

Publication Analysis

Top Keywords

carbon stocks
20
carbon
12
blue carbon
12
hydrogeomorphic settings
12
mangrove blue
8
open coast
8
soil carbon
8
undisturbed forests
8
live biomass
8
carbon stock
8

Similar Publications

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

The unique biodiversity and vast carbon stocks of the Amazon rainforests are essential to the Earth System but are threatened by future water balance changes. Empirical evidence suggests that species and trait diversity may mediate forest drought responses, yet little evidence exists for tropical forest responses. In this simulation study, we identify key axes of trait variation and quantify the extent to which functional trait diversity increases tropical forests' drought resistance.

View Article and Find Full Text PDF

Understanding seagrass dynamics is crucial for the effective management and conservation of seagrass meadows. However, such information remains limited for many regions worldwide, including Kuta Mandalika on Lombok Island, Indonesia. This rapidly developing coastal area, which is home to both tourism infrastructure and an international race circuit, hosts extensive seagrass meadows whose condition and dynamics require careful assessment.

View Article and Find Full Text PDF

Extending the Linear Dynamic Range of Single Particle ICP-MS for the Quantification of Microplastics.

Anal Chem

September 2025

Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-1070, United States.

In response to the growing concern of microplastics (1 μm to 5 mm) accumulation affecting human health, the development of analytical methods continues to be critical for the detection and characterization of microplastic particles. In this context, pursuing exceptional particle detection capability down to practical low levels and rapid analyses with high sample throughput makes single particle inductively coupled plasma mass spectrometry (spICP-MS) very attractive for microplastics analysis. Existing spICP-MS-based studies have routinely shown limitations in the accurate sizing and quantification of particle number concentration through targeting carbon content, with reported size limits of detection in the range of 0.

View Article and Find Full Text PDF

Above-ground biomass contributes a large proportion of mangrove carbon stock; however, spatio-temporal dynamics of biomass are poorly understood in carbonate settings of the Southern Hemisphere. This influences the capacity to accurately project the effects of accelerating sea-level rise on this important carbon store. Here, above-ground biomass and productivity dynamics were quantified across mangrove age zones dominated by , spanning a tidal gradient atop a reef platform at Low Isles, Great Barrier Reef, Australia.

View Article and Find Full Text PDF