Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity.

Elife

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States.

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159879PMC
http://dx.doi.org/10.7554/eLife.52696DOI Listing

Publication Analysis

Top Keywords

biological conflict
8
conflict systems
8
highly regulated
4
regulated diversifying
4
diversifying ntp-dependent
4
ntp-dependent biological
4
systems implications
4
implications emergence
4
emergence multicellularity
4
multicellularity social
4

Similar Publications

Parasitology of the twenty-first century: are we moving in the right direction?

J Med Microbiol

September 2025

Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.

For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.

View Article and Find Full Text PDF

Recent Advances in Gene Therapy for Hemophilia.

Clin Appl Thromb Hemost

September 2025

Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.

Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.

View Article and Find Full Text PDF

Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.

View Article and Find Full Text PDF

Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.

Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.

View Article and Find Full Text PDF

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF