98%
921
2 minutes
20
DNA replication and RNA transcription compete for the same substrate during S phase. Cells have evolved several mechanisms to minimize such conflicts. Here, we identify the mechanism by which the transcription termination helicase Sen1 associates with replisomes. We show that the N terminus of Sen1 is both sufficient and necessary for replisome association and that it binds to the replisome via the components Ctf4 and Mrc1. We generated a separation of function mutant, sen1-3, which abolishes replisome binding without affecting transcription termination. We observe that the sen1-3 mutants show increased genome instability and recombination levels. Moreover, sen1-3 is synthetically defective with mutations in genes involved in RNA metabolism and the S phase checkpoint. RNH1 overexpression suppresses defects in the former, but not the latter. These findings illustrate how Sen1 plays a key function at replication forks during DNA replication to promote fork progression and chromosome stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034062 | PMC |
http://dx.doi.org/10.1016/j.celrep.2020.01.087 | DOI Listing |
PLoS Genet
September 2025
Dept of Biology, Portland State University, Portland, Oregon, United States of America.
The ability to complete DNA replication as replisomes converge has recently been shown to be a highly-regulated, multi-enzymatic process. Converging forks also are likely to generate unique supercoiled, tangled, or knotted substrates. These structures are typically resolved by one of the four topoisomerases encoded by Escherichia coli.
View Article and Find Full Text PDFUnlabelled: Homologous recombination (HR) is a DNA double-strand break repair pathway that facilitates genetic exchange and protects damaged replication forks during DNA synthesis. As a template-based repair process, the successful repair of a double-strand break depends on locating suitable homology from a donor DNA sequence elsewhere in the genome. In eukaryotes, Rad51 catalyzes the homology search in coordination with the ATP-dependent motor protein Rad54.
View Article and Find Full Text PDFNature
September 2025
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
Nuclease-helicase DNA2 is a multifunctional genome caretaker that is essential for cell proliferation in a range of organisms, from yeast to human. Bi-allelic DNA2 mutations that reduce DNA2 concentrations cause a spectrum of primordial dwarfism disorders, including Seckel and Rothmund-Thomson-related syndromes. By contrast, cancer cells frequently express high concentrations of DNA2 (refs.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada.
Replication stress (RS) poses a threat to genome stability and drives genomic rearrangements. The homologous recombination (HR) pathway repairs stalled replication forks (RFs) and prevents such instability. Through an E3 ubiquitin ligase screen aimed at identifying regulators of RAD51, we identified macrophage erythroblast attacher (MAEA), a core component of C-terminal to Lish (CTLH) E3 ubiquitin ligase complex, as a regulator of the HR pathway.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
August 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. Electronic address:
Purpose: Poly ADP ribose polymerase inhibitors (PARPi) are being combined with photon and proton radiotherapy in clinical trials. We sought to investigate mechanisms of PARPi radiosensitization at varying linear energy transfer (LET) levels after observing an extreme normal tissue response in an 18-year-old with high grade glioma without a germline alteration predictive of heightened radiosensitivity treated with veliparib and proton therapy.
Experimental Design: BRCA1/2 wild-type non-cancerous and cancerous cells were treated with PARPi plus photons or protons at the entrance (ENT, dose-averaged LET [LETd] 2.