98%
921
2 minutes
20
Epithelial calcium channel TRPV6 is a member of the vanilloid subfamily of TRP channels that is permeable to cations and highly selective to Ca ; it shows constitutive activity regulated negatively by Ca and positively by phosphoinositol and cholesterol lipids. In this review, we describe the molecular structure of TRPV6 and discuss how its structural elements define its unique functional properties. High Ca selectivity of TRPV6 originates from the narrow selectivity filter, where Ca ions are directly coordinated by a ring of anionic aspartate side chains. Divalent cations Ca and Ba permeate TRPV6 pore according to the knock-off mechanism, while tight binding of Gd to the aspartate ring blocks the channel and prevents Na from permeating the pore. The iris-like channel opening is accompanied by an α-to-π helical transition in the pore-lining transmembrane helix S6. As a result of this transition, the intracellular halves of the S6 helices bend and rotate by about 100 deg, exposing different residues to the channel pore in the open and closed states. Channel opening is also associated with changes in occupancy of the transmembrane domain lipid binding sites. The inhibitor 2-aminoethoxydiphenyl borate (2-APB) binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helical bundle and shifts open-closed channel equilibrium towards the closed state by outcompeting lipids critical for activation. Ca inhibits TRPV6 via binding to calmodulin (CaM), which mediates Ca -dependent inactivation. The TRPV6-CaM complex exhibits 1:1 stoichiometry; one TRPV6 tetramer binds both CaM lobes, which adopt a distinct head-to-tail arrangement. The CaM C-terminal lobe plugs the channel through a unique cation-π interaction by inserting the side chain of lysine K115 into a tetra-tryptophan cage at the ion channel pore intracellular entrance. Recent studies of TRPV6 structure and function described in this review advance our understanding of the role of this channel in physiology and pathophysiology and inform new therapeutic design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689878 | PMC |
http://dx.doi.org/10.1113/JP279024 | DOI Listing |
Nat Rev Mol Cell Biol
September 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
National Institute of Biological Sciences, Beijing, China.
G protein-coupled receptors (GPCRs) engage multiple transducers to regulate distinct physiological processes. These transducers include various G proteins subtypes, GPCR kinases (GRKs), and β-arrestins. In addition to promoting receptor desensitization, β-arrestins serve as scaffolds for signaling via non-G protein pathways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .
View Article and Find Full Text PDFMed Eng Phys
October 2025
College of Basic Medical Science, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
September 2025
Department of Biomedical Sciences (DSB), University of Padova, Padova 35131, Italy
The calcium ion (Ca) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca flux through specialized channels.
View Article and Find Full Text PDF