Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, we report a new molecule structure modification strategy for non-fullerene small-molecule electron acceptors (NFAs) for solar cells through trifluoromethylation of end-capping groups. The synthesized trifluoromethylated acceptor ITCF3 exhibits narrower band gap, stronger light absorption, lower molecular energy levels, and better electron transport property compared to the reference NFA without the trifluoromethyl group (ITIC). Bulk heterojunction solar cells based on ITCF3 combined with the PM6 polymer donor exhibit a significantly improved power conversion efficiency of 13.3% compared with the ITIC-based device (8.4%). This work reveals great potential of trifluoromethylation in the design of efficient photovoltaic acceptor materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b20544DOI Listing

Publication Analysis

Top Keywords

solar cells
12
improved power
8
power conversion
8
conversion efficiency
8
trifluoromethyl group-modified
4
group-modified non-fullerene
4
non-fullerene acceptor
4
acceptor improved
4
efficiency 13%
4
13% polymer
4

Similar Publications

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Kleptoplasty: Solar-powered sea slugs house stolen plastids in kleptosomes.

Curr Biol

September 2025

Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany; Research Training Group 2984 Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems (EvoReSt) and IMPRS Molecular Biology, Department

A new study shows that Sacoglossan sea slugs sequester stolen plastids in arrested phagosomes called 'kleptosomes', redefining how these organelles are compartmentalized and regulated in animal cells. Under normal conditions, the plastids are supported and maintained, but starvation causes their degradation, supporting a potential nutritional role.

View Article and Find Full Text PDF

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF

Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells.

Nanomicro Lett

September 2025

College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.

The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.

View Article and Find Full Text PDF