98%
921
2 minutes
20
Photoreceptor engineering has recently emerged as a means for improving agronomically beneficial traits in crop species. Despite the central role played by the red/far-red photoreceptor phytochromes (PHYs) in controlling fruit physiology, the applicability of PHY engineering for increasing fleshy fruit nutritional content remains poorly exploited. In this study, we demonstrated that the fruit-specific overexpression of a constitutively active GAF domain Tyr -to-His PHYB2 mutant version (PHYB2 ) significantly enhances the accumulation of multiple health-promoting antioxidants in tomato fruits, without negative collateral consequences on vegetative development. Compared with the native PHYB2 overexpression, PHYB2 -overexpressing lines exhibited more extensive increments in transcript abundance of genes associated with fruit plastid development, chlorophyll biosynthesis and metabolic pathways responsible for the accumulation of antioxidant compounds. Accordingly, PHYB2 -overexpressing fruits developed more chloroplasts containing voluminous grana at the green stage and overaccumulated carotenoids, tocopherols, flavonoids and ascorbate in ripe fruits compared with both wild-type and PHYB2-overexpressing lines. The impacts of PHYB2 or PHYB2 overexpression on fruit primary metabolism were limited to a slight promotion in lipid biosynthesis and reduction in sugar accumulation. Altogether, these findings indicate that mutation-based adjustments in PHY properties represent a valuable photobiotechnological tool for tomato biofortification, highlighting the potential of photoreceptor engineering for improving quality traits in fleshy fruits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540714 | PMC |
http://dx.doi.org/10.1111/pbi.13362 | DOI Listing |
ACS Chem Biol
September 2025
Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Technische Universiteit Eindhoven, 5612 AZ Eindhoven, The Netherlands.
The orphan nuclear receptor NR2F6 (Nuclear Receptor subfamily 2 group F member 6) is an emerging therapeutic target for cancer immunotherapy. Upregulation of NR2F6 expression in tumor cells has been linked to proliferation and metastasis, while in immune cells NR2F6 inhibits antitumor T-cell responses. Small molecule modulation of NR2F6 activity might therefore be a novel strategy in cancer treatment, benefiting from this dual role of NR2F6.
View Article and Find Full Text PDFStem Cell Reports
September 2025
Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece. Electronic address:
In the adult brain, neural stem cells (NSCs) constitutively generate new neurons in specific neurogenic domains. Recent research has unveiled reactive neurogenesis, whereby brain injury triggers NSC activation, enhancing their differentiation potential and guiding progeny to injured areas. Our study provides evidence of alternative migration pathways for newborn neurons in the mouse subcortical forebrain, revealed by administration of a chemotherapeutic agent.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Nutrition Sciences, School of Health Larestan University of Medical Sciences Iran.
Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China.
Essential thrombocythemia (ET) is a myeloproliferative neoplasm (MPN) characterized by abnormal megakaryocyte proliferation and a markedly elevated platelet count, which predisposes patients to thrombotic or hemorrhagic events. Approximately 50%-60% of ET patients harbor a JAK2 V617F mutation. This mutation drives constitutive JAK kinase activation, promoting megakaryocyte proliferation and platelet production, while potentially activating inflammatory pathways and damaging vascular endothelium.
View Article and Find Full Text PDFExp Hematol
September 2025
Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan. Electronic address:
Gene rearrangements of the human MLL gene (also known as KMT2A) generate multiple fusion oncoproteins which cause leukemia with poor prognosis. MLL is an epigenetic regulator that reads and writes epigenetic information and has an evolutionarily conserved role maintaining expression of Homeotic (HOX) genes during embryonic development. Most MLL gene rearrangements found in leukemia generate a constitutively active version of the wild-type protein, which causes overexpression of HOX and other genes and leukemic transformation of normal hematopoietic progenitors.
View Article and Find Full Text PDF