Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Eutectic high entropy alloys, with lamellar arrangement of solid solution phases, represent a new paradigm for simultaneously achieving high strength and ductility, thereby circumventing this well-known trade-off in conventional alloys. However, dynamic strengthening mechanisms and phase-boundary interactions during external loading remain unclear for these eutectic systems. In this study, small-scale mechanical behavior was evaluated for AlCoCrFeNi eutectic high entropy alloy, consisting of a lamellar arrangement of L1 and B2 solid-solution phases. The ultimate tensile strength was 1165 MPa with ductility of ~18% and ultimate compressive strength was 1863 MPa with a total compressive fracture strain of ~34%. Dual mode fracture was observed with ductile failure for L1 phase and brittle mode for B2 phase. Phase-specific mechanical tests using nano-indentation and micro-pillar compression showed higher hardness and strength and larger strain rate sensitivity for B2 compared with L1. Micro-pillars on B2 phase deformed by plastic barreling while L1 micro-pillars showed high density of slip steps due to activation of more slip systems and homogenous plastic flow. Mixed micro-pillars containing both the phases exhibited dual yielding behavior while the interface between L1 and B2 was well preserved without any sign of separation or cracking. Phase-specific friction analysis revealed higher coefficient of friction for B2 compared to L1. These results will pave the way for fundamental understanding of phase-specific contribution to bulk mechanical response of concentrated alloys and help in designing structural materials with high fracture toughness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021732PMC
http://dx.doi.org/10.1038/s41598-020-59513-2DOI Listing

Publication Analysis

Top Keywords

eutectic high
12
high entropy
12
small-scale mechanical
8
mechanical behavior
8
entropy alloy
8
lamellar arrangement
8
high
6
eutectic
4
behavior eutectic
4
alloy eutectic
4

Similar Publications

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

Extracting soluble lignin from poplar sawdust via ternary cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment for the fabrication of biodegradable films.

Int J Biol Macromol

September 2025

School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.. Electronic address:

The multi-component deep eutectic solvents (DES) have emerged as indispensable tools in the lignocellulosic pretreatment process, facilitating the efficient biotransformation of biomass sugars into valuable products. In this investigation, FeCl was ingeniously incorporated to amplify the pretreatment efficacy of a DES synthesized from cetyltrimethylammonium bromide (CTAB) and lactic acid (LA), specifically targeting poplar sawdust (PS). Remarkably, under the meticulously optimized molar ratio of 1: 4:1, this innovative ternary DES achieved an unprecedented removal of 68.

View Article and Find Full Text PDF

With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

High-strength Janus cellulose/MXene composite paper from deep eutectic solvent-carboxymethylated eucalyptus fibers for electromagnetic shielding.

Int J Biol Macromol

September 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou, 510640, China.

The development of cellulose-based electromagnetic shielding materials is critical for the advancement of sustainable, lightweight, and flexible electronic devices. Most high-performance composites rely on nanocellulose, which is expensive and energy-intensive to produce. In this work, we employ chemically modified conventional eucalyptus pulp fibers (non-nano) to fabricate Janus-structured cellulose/MXene composite papers.

View Article and Find Full Text PDF