Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Quantitative information about protein-ligand interactions is central to drug discovery. To obtain the quintessential reaction dissociation constant, ideally measurements of reactions should be performed without perturbations by molecular labeling or immobilization. The technique of transient induced molecular electrical signal (TIMES) has provided a promising technique to meet such requirements, and its performance in a microfluidic environment further offers the potential for high throughput and reduced consumption of reagents. In this work, we further the development by using integrated TIMES signal (i-TIMES) to greatly enhance the accuracy and reproducibility of the measurement. While the transient response may be of interest, the integrated signal directly measures the total amount of surface charge density resulted from molecules near the surface of electrode. The signals enable quantitative characterization of protein-ligand interactions. We have demonstrated the feasibility of i-TIMES technique using different biomolecules including lysozyme, ,',″-triacetylchitotriose (TriNAG), aptamer, -aminobenzamidine (pABA), bovine pancreatic ribonuclease A (RNaseA), and uridine-3'-phosphate (3'UMP). The results show i-TIMES is a simple and accurate technique that can bring tremendous value to drug discovery and research of intermolecular interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b05310 | DOI Listing |