Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silicon anodes have attracted much attention owing to their high theoretical capacity. Nonetheless, an inevitable and enormous volumetric expansion of silicon in the lithiated state restrained the development of the silicon anode for lithium-ion batteries. Fortunately, the utilization of the high-performance binder is a promising and effective way to overcome such obstacles. Herein, a polymer of intrinsic microporosity (PIM) is applied as the binder for the silicon anode, which is composed of a rigid polymer backbone, an intrinsic porous structure, and active carboxyl groups (PIM-COOH). Compared to the traditional binder, both the long-term stability and rate performance of the electrode using PIM-COOH as the binder are significantly improved. The mechanism responsible for the enhanced performance is investigated. The PIM-COOH binder provides stronger adhesion toward the current collector than the conventional binders. The unique rigid polymer backbone and porous structure of the PIM-COOH binder enable a good capability to withstand the volume change and external stress generated by the Si anode. The porous structure of the PIM-COOH binder enhances lithium-ion transportation compared to the SA binder, which improves rate performance of the silicon anode. This work provides a unique insight into design, synthesis, and utilization of the binders for lithium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b03497DOI Listing

Publication Analysis

Top Keywords

pim-cooh binder
16
silicon anode
12
porous structure
12
performance silicon
8
lithium-ion batteries
8
binder
8
rigid polymer
8
polymer backbone
8
rate performance
8
structure pim-cooh
8

Similar Publications

Silicon anodes have attracted much attention owing to their high theoretical capacity. Nonetheless, an inevitable and enormous volumetric expansion of silicon in the lithiated state restrained the development of the silicon anode for lithium-ion batteries. Fortunately, the utilization of the high-performance binder is a promising and effective way to overcome such obstacles.

View Article and Find Full Text PDF