98%
921
2 minutes
20
Nanocomposite AlCrSiN hard coatings were deposited on the cemented carbide substrates with a negative substrate bias voltage within the range of -80 to -120 V using the cathodic arc evaporation system. The effect of variation in the bias voltage on the coating-substrate adhesion and nanohardness was investigated. It was clear that if bias voltage increased, nanohardness increased in the range from -80 V to -120 V. The coating deposited at the bias voltage of -120 V had the highest nanohardness (37.7 ± 1.5 GPa). The samples were prepared by brushing and wet microblasting to finish a surface and prepare the required cutting edge radii for the tool life cutting tests and the coating adhesion observation. The indents after the static Mercedes indentation test were studied by scanning the electron microscope to evaluate the coating-substrate adhesion. The longer time of edge preparation with surface finishing led to a slight deterioration in the adhesion strength of the coating to the substrate. The tool wear of cemented carbide turning inserts was studied on the turning centre during the tool life cutting test. The tested workpiece material was austenitic stainless steel. The cemented carbide turning inserts with larger cutting edge radius were worn out faster during the machining. Meanwhile, the tool life increased when the cutting edge radius was smaller.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074613 | PMC |
http://dx.doi.org/10.3390/mi11020166 | DOI Listing |
Autophagy
September 2025
Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Precision Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands, 31 433883549.
Background: Making informed decisions about clinical trial participation can be overwhelming for patients due to the complexity of trial information, potential risks and benefits, and the emotional burden of a recent diagnosis. Patient decision aids (PDAs) simplify this process by providing clear information on treatment options, empowering patients to actively participate in shared decision-making with their doctors. While PDAs have shown promise in various health care contexts, their use in clinical trials, particularly in the form of trial-specific patient decision aids (tPDAs), remains underused.
View Article and Find Full Text PDFBMJ Open
September 2025
Nursing School, Ningxia Medical University, Yinchuan, Ningxia, China.
Background: Nasopharyngeal carcinoma (NPC) presents significant nutritional challenges during concurrent chemoradiotherapy, adversely affecting treatment outcomes and quality of life. Non-pharmacological interventions may help improve nutritional and immune status, reduce complications and enhance overall well-being. However, evidence of their effectiveness is scattered and inconsistent, and no systematic review has yet synthesised the evidence on their effectiveness.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
The intestinal immune microenvironment plays a crucial role in regulating systemic immune responses and is implicated in various diseases. Nevertheless, no existing model simultaneously replicates the three-dimensional (3D) immune microenvironment and the mucosal barrier. This study presents a novel mucosa-mimic model that consists of a cell-laden hydrogel matrix and a pseudo-mucus layer that emulate the intestinal lamina propria and mucosal barrier, respectively.
View Article and Find Full Text PDFInt J Pharm
September 2025
Life Quality (LQ) Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China. Electronic address:
Gastrointestinal (GI) physiological variability significantly influences dissolution and bioavailability of non-disintegrating solid drug systems. This study employed the dynamic human stomach-intestine (DHSI-IV, branded as NERDT) system to characterize how gastric emptying kinetics and intestinal environmental dynamics affect drug release, using extended-release metformin matrix tablets (Glucophage XR®) and metformin osmotic pump tablets (Nida®) as model formulations. The DHSI-IV (NERDT) system accurately simulated three fasting-state gastric emptying profiles (30-120 min complete emptying) with excellent fit to the modified Elashoff model (R = 0.
View Article and Find Full Text PDF