98%
921
2 minutes
20
Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer-active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API-polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials-process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076526 | PMC |
http://dx.doi.org/10.3390/pharmaceutics12020124 | DOI Listing |
BMC Med Educ
September 2025
Department of Prosthodontics, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
Background: Bridge preparation skills are a vital component of dental education and require specific techniques. This study aimed to develop and evaluate 3D printed teeth for use in defect-oriented bridge preparation and pre-prosthetic exercises in dental training, addressing the limited customization and lack of integrated workflows found in commercial typodont teeth. The null hypothesis stated that 3D printed teeth offered no advantage over established typodont training methods for bridge preparation.
View Article and Find Full Text PDFJ Gen Intern Med
September 2025
David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
J Prosthet Dent
September 2025
Associate Professor, Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Malta. Electronic address:
A digital workflow merging root submergence, immediate dental implant and definitive intermediate abutment placements, and custom healing abutment fabrication to enhance esthetic and biological outcomes in immediate implant procedures is described. The procedure involves a prosthetically driven plan on intraoral and cone beam computed tomography (CBCT) scans, digital planning using a specialized software program, the creation of a surgical guide, and the digital design of custom components. A 3-dimensionally (3D) printed healing abutment was produced by following specific protocols.
View Article and Find Full Text PDFJ Prosthet Dent
September 2025
Full Professor, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia. Electronic address:
Statement Of Problem: Although custom temporomandibular joint (TMJ) prostheses manufactured via computer-aided design and manufacturing (CAD-CAM) and produced through 3-dimensional (3D) printing or computer numerical control (CNC) allow for sagittal curvature adjustments in the glenoid fossa, their design remains unregulated by the Food and Drug Administration. Consequently, the geometry is determined largely by the engineer's discretion, with limited biomechanical evidence to guide these decisions. The lack of validation regarding how sagittal curvature influences joint stress distribution under various anatomical and functional conditions represents a gap in current knowledge that warrants investigation.
View Article and Find Full Text PDFJ Prosthodont Res
September 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: This study aimed to evaluate the performance of 3D-printed denture base resins (DBRs) compared with conventionally printed DBRs, examine their biofilm formation and physical properties, and determine the viability of 3D-printed DBRs as a superior alternative in removable prosthodontics.
Methods: The DBR samples were fabricated using traditional packing (TRA), milling (MIL), and 3D printing (3DP) methods. All samples were serially polished with an abrasive paper.